-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvis_result_mat.py
309 lines (254 loc) · 10.7 KB
/
vis_result_mat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import numpy as np
import math
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import main_annemarie
import os
import logging
import time
def create_heatmap(csv_name, png_name, folder_name):
folder_name = "results/" + folder_name
if not os.path.exists(folder_name):
os.makedirs(folder_name)
df = pd.read_csv(csv_name, header=None).transpose()
plt.figure(figsize=(8, 6)) # Optional: Set the figure size
sns.heatmap(df, cmap='binary', annot=False, fmt='', linewidths=0.0)
plt.title('Aktivierung der Neuronen im Sensory Layer')
plt.xlabel('Iteration')
plt.ylabel('Neuron im Sensory Layer')
save_path = os.path.join(folder_name,png_name)
if JUST_SHOW:
plt.show()
else:
plt.savefig(save_path)
#plt.show()
def line_plot(data, run_names, y_label, title, folder_name):
folder_name = "results/" + folder_name
if not os.path.exists(folder_name):
os.makedirs(folder_name)
plt.figure(figsize=(8, 6)) # Optional: Set the figure size
num_lines = len(data)
color_map = plt.get_cmap('viridis')
colors = [color_map(i) for i in np.linspace(0, 1, num_lines)]
for i in range(num_lines):
if run_names[i] == "sens_512_rand_1024":
plt.plot(data[i], label=run_names[i], marker='o', linestyle='--', color="red")
else:
plt.plot(data[i], label=run_names[i], marker='o', linestyle='-', color=colors[i])
plt.xlabel('Iteration')
plt.ylabel(y_label)
plt.title(title)
plt.legend()
png_name = title + ".png"
save_path = os.path.join(folder_name,png_name)
if JUST_SHOW:
plt.show()
else:
plt.savefig(save_path)
def calc_mean_for_each_iteration(result_matrix):
return np.mean(result_matrix, axis=1)
def calc_var_for_each_iteration(result_matrix):
return np.var(result_matrix, axis=1)
def calc_diff_for_every_two_iterations(result_matrix):
diff = []
for i in range(len(result_matrix)-1):
diff_arr = np.abs(np.array(result_matrix[i]) - np.array(result_matrix[i+1]))
diff.append(np.mean(diff_arr))
return diff
def one_run(n_sens, n_rand, foldername, means, vars, diffs, run_names, track_input_duration = False):
main_annemarie.N_RAND = n_rand
main_annemarie.N_SENS = n_sens
main_annemarie.STEPS = STEPS
main_annemarie.STEP_STOP_INIT = STEP_STOP_INIT
main_annemarie.BELL_INPUT = INPUT_BELL
main_annemarie.BINARY_INPUT = INPUT_BINARY
main_annemarie.CUTTOFF_BELL_INPUT = INPUT_CUTTOFF_BELL
main_annemarie.CUTTOFF_BELL_INPUT_FACTOR = INPUT_CUTTOFF_BELL_FACTOR
result_matrix = main_annemarie.run_simulation()
means.append(calc_mean_for_each_iteration(result_matrix))
vars.append(calc_var_for_each_iteration(result_matrix))
diffs.append(calc_diff_for_every_two_iterations(result_matrix))
# Convert the NumPy array to a Pandas DataFrame
df = pd.DataFrame(result_matrix)
# Specify the file path where you want to save the CSV file
csv_file_path = "matrix_data.csv"
# Define a format string to display numbers without scientific notation
format_str = "%.6f"
df.to_csv(csv_file_path, header=False, index=False, float_format=format_str)
run_name = "sens_{n_sens}_rand_{n_rand}"
if track_input_duration:
run_name = run_name + "_with_input_duration_of_" + str(main_annemarie.INPUT_DURATION)
run_names.append(run_name.format(n_sens=n_sens, n_rand=n_rand))
filename_template = run_name + ".png"
if CREATE_HEATMAPS:
create_heatmap(csv_file_path, filename_template.format(n_sens=n_sens, n_rand=n_rand), foldername)
def multiple_runs_sizes(min_sens = 8, max_sens = 2048, factor_rand_sens = 2):
means = []
vars = []
diffs = []
run_names = []
n_sens = min_sens
while n_sens <= max_sens:
n_rand = n_sens * factor_rand_sens
one_run(n_sens, n_rand, "heatmap_for_sens_rand_proportional", means, vars, diffs, run_names)
n_sens = n_sens * 2
return means, vars, diffs, run_names
def multiple_runs_nrand(min_rand = 8, max_rand = 4096, fixed_sens = 512):
means = []
vars = []
diffs = []
run_names = []
n_rand = min_rand
while n_rand <= max_rand:
one_run(fixed_sens, n_rand, "heatmap_for_fixed_sens", means, vars, diffs, run_names)
n_rand = n_rand * 2
return means, vars, diffs, run_names
def multiple_runs_nsens(min_sens = 8, max_sens = 2048, fixed_rand = 1024):
means = []
vars = []
diffs = []
run_names = []
n_sens = min_sens
while n_sens <= max_sens:
one_run(n_sens, fixed_rand, "heatmap_for_fixed_rand", means, vars, diffs, run_names)
n_sens = n_sens * 2
return means, vars, diffs, run_names
def one_trail(run_size = True, run_nrand = True, run_nsens = True):
if run_size:
n_trails_for_one_experiment(1, multiple_runs_sizes, "multiple runs {n} trails".format(n=1), "lines_for_sens_rand_proportional_{n}_trails".format(n=1))
if run_nrand:
n_trails_for_one_experiment(1, multiple_runs_nrand, "multiple runs with fixed nsens {n} trails".format(n=1), "lines_for_fixed_sens_{n}_trails".format(n=1))
if run_nsens:
n_trails_for_one_experiment(1, multiple_runs_nsens, "multiple runs with fixed nrand {n} trails".format(n=1), "lines_for_fixed_rand_{n}_trails".format(n=1))
def n_trails_for_one_experiment(n, experiment, title, foldername):
means_for_all_trails = []
vars_for_all_trails = []
diffs_for_all_trails = []
run_names = []
for i in range(n):
means, vars, diffs, run_names = experiment()
means_for_all_trails.append(means)
vars_for_all_trails.append(vars)
diffs_for_all_trails.append(diffs)
mean_of_means = np.mean(means_for_all_trails, axis=0)
mean_of_vars = np.mean(vars_for_all_trails, axis=0)
mean_of_diffs = np.mean(diffs_for_all_trails, axis=0)
if CREATE_LINE_PLOTS:
line_plot(mean_of_means, run_names, "mean",'mean for {title}'.format(title=title), foldername)
line_plot(mean_of_vars, run_names, "variance",'variance for {title}'.format(title=title), foldername)
line_plot(mean_of_diffs, run_names, "mean difference between iterations",'mean difference between iterations for {title}'.format(title=title), foldername)
def n_trails(n = 10, run_size = True, run_nrand = True, run_nsens = True):
global CREATE_HEATMAPS
CREATE_HEATMAPS = False
if run_size:
n_trails_for_one_experiment(n, multiple_runs_sizes, "multiple runs {n} trails".format(n=n), "lines_for_sens_rand_proportional_{n}_trails".format(n=n))
if run_nrand:
n_trails_for_one_experiment(n, multiple_runs_nrand, "multiple runs with fixed nsens {n} trails".format(n=n), "lines_for_fixed_sens_{n}_trails".format(n=n))
if run_nsens:
n_trails_for_one_experiment(n, multiple_runs_nsens, "multiple runs with fixed nrand {n} trails".format(n=n), "lines_for_fixed_rand_{n}_trails".format(n=n))
def plot_bell_curves(n_sens = 512):
bell_curve = main_annemarie.bell_curve_input(n_sens, n_sens/2, n_sens/8)
binary_curve = main_annemarie.binary_input(n_sens, n_sens/2, n_sens/8)
cuttoff_bell_curve_2 = main_annemarie.cutoff_bell_curve_input(n_sens, n_sens/2, n_sens/8, 2.0)
cuttoff_bell_curve_1_5 = main_annemarie.cutoff_bell_curve_input(n_sens, n_sens/2, n_sens/8, 1.5)
cuttoff_bell_curve_1_1 = main_annemarie.cutoff_bell_curve_input(n_sens, n_sens/2, n_sens/8, 1.1)
plt.plot(bell_curve, label="bell")
plt.plot(cuttoff_bell_curve_2, label="cutoff bell f=2")
plt.plot(cuttoff_bell_curve_1_5, label="cutoff bell f=1.5")
plt.plot(cuttoff_bell_curve_1_1, label="cutoff bell f=1.1")
plt.plot(binary_curve, label="binary")
plt.legend()
plt.title('Input Varianten')
plt.xlabel('Neuron im Sensory Layer')
plt.ylabel('Aktivierung')
if JUST_SHOW:
plt.show()
else:
if not os.path.exists("other_results"):
os.makedirs("other_results")
plt.savefig("other_results/bell_curves.png")
means = []
means.append(np.mean(bell_curve))
means.append(np.mean(cuttoff_bell_curve_2))
means.append(np.mean(cuttoff_bell_curve_1_5))
means.append(np.mean(cuttoff_bell_curve_1_1))
means.append(np.mean(binary_curve))
names = ["bell", "cutoff bell f=2", "cutoff bell f=1.5", "cutoff bell f=1.1", "binary"]
colors = ["blue", "orange", "green", "red", "purple"]
plt.figure(figsize=(8, 6)) # Optional: Set the figure size
plt.bar(names, means, color=colors)
plt.title('Mittelwerte der Input Varianten')
plt.xlabel('Input Varianten')
plt.ylabel('Mittelwert')
if JUST_SHOW:
plt.show()
else:
if not os.path.exists("other_results"):
os.makedirs("other_results")
plt.savefig("other_results/bell_curves_means.png")
CREATE_HEATMAPS = False
CREATE_LINE_PLOTS = True
INPUT_BELL = False
INPUT_BINARY = False
INPUT_CUTTOFF_BELL = True
INPUT_CUTTOFF_BELL_FACTOR = 2.0
STEPS = 10
STEP_STOP_INIT = 2
JUST_SHOW = False
def standard_run_for_heatmaps():
global CREATE_HEATMAPS
CREATE_HEATMAPS = True
global CREATE_LINE_PLOTS
CREATE_LINE_PLOTS = False
one_trail(run_size = True, run_nrand = True, run_nsens = True)
def standard_run_for_line_plots(n):
global CREATE_HEATMAPS
CREATE_HEATMAPS = False
global CREATE_LINE_PLOTS
CREATE_LINE_PLOTS = True
n_trails(n = n, run_size = True, run_nrand = True, run_nsens = True)
def standard_run_for_testing_input_duration():
global CREATE_HEATMAPS
CREATE_HEATMAPS = True
global CREATE_LINE_PLOTS
CREATE_LINE_PLOTS = False
for i in range(1, 10):
main_annemarie.CUTTOFF_BELL_INPUT = i
one_run(512, 1024, 'heatmap_for_input_duration', [], [], [], [], True)
def just_one_run():
global CREATE_HEATMAPS
global CREATE_LINE_PLOTS
global INPUT_BELL
global INPUT_BINARY
global INPUT_CUTTOFF_BELL
global INPUT_CUTTOFF_BELL_FACTOR
global STEPS
global STEP_STOP_INIT
global JUST_SHOW
CREATE_HEATMAPS = True
CREATE_LINE_PLOTS = True
INPUT_BELL = False
INPUT_BINARY = False
INPUT_CUTTOFF_BELL = True
INPUT_CUTTOFF_BELL_FACTOR = 2.0
STEPS = 100
STEP_STOP_INIT = 20
JUST_SHOW = False
one_run(512, 1024, 'single_runs', [], [], [], [], False)
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
start_time = time.time()
# for generating heatmaps
#standard_run_for_heatmaps()
# for generating line plots
# standard_run_for_line_plots(100)
# for testing input duration
# standard_run_for_testing_input_duration()
# for just one run
# just_one_run()
# for Plotting all bell curves
plot_bell_curves()
end_time = time.time()
execution_time = end_time - start_time
logger.info(f"the function took {execution_time:.4f} seconds to run.")