-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathoptimization.py
126 lines (86 loc) · 4.5 KB
/
optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import numpy as np
def fix_theta_solve_for_v(dEl, lambda_l, G, b, lambda_b, dEs, lambda_s):
# El, Es and Eb are functions of V
# inputs :
# dEb : 2G'(Gv-b) = 2G'G - 2G'b --- boundary preservation
# dEl : derivation of El towards V --- line preservation
# dEs : derivation of Es towards V --- shape preservation
# lambda_l : weight of line preservation
# lambda_b : weight of boundary preservation
# lambda_s : weight of shape preservation
# returns : V
# equation :
# lambda_b * dEb + lambda_l * dEl + lambda_s * dEs = 0
# => (2lambda_b * G'G + lambda_l * dEl + lambda_s * dEs) * V = 2lambda_b * G'b
# => A * V = B
A = 2 * lambda_b * G.transpose() @ G + lambda_l * dEl + lambda_s * dEs
B = 2 * lambda_b * G.transpose() @ b
V = np.linalg.solve(A, B)
return V
def fix_v_solve_for_theta(lines, angle, w_thetas, thetas, lambda_r, lambda_l, Pk, V, total_Uk):
# Er and El are functions of theta
# V : shape : 2Nx1
# thetas : [theta_1, theta_2,..., theta_M]' shape : Mx1
# w_thetas : w_thetas[k] is the weight of thetas[k]
# Pk : shape : 2Kx2N
# lines : [[x0, y0, x1, y1, orientation, bin_num],...]
# total_Uk : shape : Kx2x2, Uk is in shape 2x2, total K lines
# lambda_r : weight of rotation manipulation
# lambda_l : weight of line preservation
# warm up : beta : from 1 to 1e5
# bin_index of k-th detected line
A = np.zeros((len(lines), len(thetas)))
x_index, y_index = np.array(list(range(len(lines)))), np.array([line[-1] - 1 for line in lines])
A[x_index, y_index] = 1
# ek : vector after rotation
# e = [x0, y0, x1, y1,...xK, yK]' with shape 2Kx1
# e_angle : the orientation of vector ek, list with length K
e = Pk @ V
e_angle = [np.arccos(e[2 * i] / (1e-10 + np.linalg.norm(e[2 * i: 2 * i + 2]))) for i in range(len(lines))]
beta = 1
phi_all_lines = np.zeros((len(lines),))
while beta <= 1e4:
# Step 1 : fix theta, update phi
for k in range(len(lines)):
angle_uk_ek = e_angle[k] * 180.0 / np.pi - lines[k][-2]
theta_mk = thetas[lines[k][-1] - 1, ]
# print(angle_uk_ek, theta_mk)
# split angle between [ek_uk, theta_mk] or [theta_mk, ek_uk] into 100 pieces equally
phi_candidates = np.linspace(angle_uk_ek, theta_mk, num=10)
value_smallest = float('inf')
for phi in phi_candidates:
phi_ = phi / 180.0 * np.pi
Rk = np.array([[np.cos(phi_), -np.sin(phi_)],
[np.sin(phi_), np.cos(phi_)]])
value = np.sum(np.square((Rk @ total_Uk[k] @ Rk.transpose() - np.eye(2)) @ e[2 * k: 2 * k + 2]))
value = lambda_l / len(lines) * value + beta * (phi - theta_mk) ** 2
if value < value_smallest:
value_smallest = value
phi_all_lines[k] = phi
# Step 2 : fix phi, update theta
# Part 1 : Rotation Manipulation
# w_thetas : shape : Mx1
# thetas : shape : Mx1, thetas[m] is the angle of m-th bin
# angle : angle * np.ones((M, 1)) : shape : Mx1
# decompose : theta_m+1 = P * thetas
# P : shape : MxM, variation of identity matrix
# D : I - P
# Er_theta = (thetas - angle) @ (thetas - angle)' @ w_thetas + l2_norm(thetas - P @ thetas)
# notice that (thetas - P @ thetas) = (I - P) @ thetas, replace (I - P) with D, we get :
# Er_theta = (thetas - angle) @ (thetas - angle)' @ w_thetas + l2_norm(D @ thetas)
# dEr / d thetas = 2 * np.diag(w_thetas) @ (thetas - angle) + 2 * D' @ D @ thetas
# Part 2 : Auxiliary Part
# A : shape : KxM
# phi : shape : Kx1, (in this function named phi_all_lines)
# theta_mk = A @ thetas, shape : Kx1, theta_mk[k] is the bin angle of k-th line
# penalty part = bate * ∑ (phi_all_lines[k] - theta_mk[k]) ** 2 = beta * l2_norm(phi_all_lines - A @ thetas)
# d penalty / d thetas = 2 * beta * A' @ (A @ thetas - phi_all_lines)
# equation :
# lambda_r * d Er + d penalty = 0
# F @ thetas = f
D = np.eye(len(thetas)) - np.eye(len(thetas))[np.array(list(range(1 - len(thetas), 1, 1))), :]
F = lambda_r * (np.diag(w_thetas) + D.transpose() @ D) + beta * A.transpose() @ A
f = lambda_r * np.diag(w_thetas) @ (np.ones((len(thetas),)) * angle) + beta * A.transpose() @ np.array(phi_all_lines)
thetas = np.linalg.solve(F, f)
beta *= 10
return thetas