-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvideo.py
64 lines (49 loc) · 2.2 KB
/
video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#%%
import cv2
import os
import einops
import torch
import gymnasium as gym
from tqdm import tqdm
from matplotlib import pyplot as plt
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler
from src.neural_env import NeuralEnv
from src.finetuning import modify_unet_for_multi_frame, lora_unet_for_multi_frame
from src.neural_env import NeuralEnv
from src.diffusion_model import DiffusionModel
#%%
with torch.no_grad():
original_env = "LunarLander-v3"
model_id="stabilityai/stable-diffusion-2-1"
tmp_env = gym.make(original_env, render_mode="rgb_array")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
state_size=8
autoencoder = AutoencoderKL.from_pretrained(model_id, subfolder="vae").to(device)
unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet").to(device)
diffusion_scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
lora = lora_unet_for_multi_frame(unet, state_size, rank=128)
lora.load_state_dict(torch.load("/tmp/checkpoints/LunarLander-v3_state_dict.pt"),strict=True)
diffusion = DiffusionModel(autoencoder, unet, diffusion_scheduler, state_size, tmp_env.action_space.n).to(device)
# create a temporary variable with our env, which will use rgb_array as render mode. This mode is supported by the RecordVideo-Wrapper
neural_env = NeuralEnv(diffusion,tmp_env)
# %%
neural_env.reset()
num_frames = 64
for _ in tqdm(range(num_frames)):
action = neural_env.action_space.sample()
neural_env.step(action, 16)
frames = neural_env.model.latents_to_frames(neural_env.latent_history)[0]
frames = einops.rearrange(frames, 'h (t w) c -> t h w c', w=256).astype('uint8')
# Parameters
output_path = 'output_video.mp4'
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# Initialize VideoWriter
video_writer = cv2.VideoWriter(output_path, fourcc, fps = 24, frame_size=tuple(frames.shape[1:3]))
# Write frames to the video
for frame in frames:
frame_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
video_writer.write(frame_bgr)
# Release the writer
video_writer.release()
print(f"Video saved to {output_path}")
# %%