-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathterrain_generator.py
383 lines (308 loc) · 12.9 KB
/
terrain_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import numpy as np
from scipy.spatial import Voronoi
from skimage.draw import polygon
from PIL import Image
from noise import snoise3
from skimage import exposure
from scipy.interpolate import interp1d
import cv2
from scipy.ndimage import gaussian_filter
from scipy.ndimage import binary_dilation
from argparse import ArgumentParser
def save_height_map(height_map, file_name):
#input height map should be float, raw output of noise map
normalized_height_map = (((height_map - height_map.min()) / (height_map.max() - height_map.min()))*255).astype(np.uint8)
cv2.imwrite(file_name, normalized_height_map)
np.save(file_name[:-4] + '.npy', height_map)
def get_boundary(vor_map, size, kernel=1):
boundary_map = np.zeros_like(vor_map, dtype=bool)
n, m = vor_map.shape
clip = lambda x: max(0, min(size-1, x))
def check_for_mult(a):
b = a[0]
for i in range(len(a)-1):
if a[i] != b: return 1
return 0
for i in range(n):
for j in range(m):
boundary_map[i, j] = check_for_mult(vor_map[
clip(i-kernel):clip(i+kernel+1),
clip(j-kernel):clip(j+kernel+1),
].flatten())
return boundary_map
def histeq(img, alpha=1):
img_cdf, bin_centers = exposure.cumulative_distribution(img)
img_eq = np.interp(img, bin_centers, img_cdf)
img_eq = np.interp(img_eq, (0, 1), (-1, 1))
return alpha * img_eq + (1 - alpha) * img
def voronoi(points, size):
# Add points at edges to eliminate infinite ridges
edge_points = size*np.array([[-1, -1], [-1, 2], [2, -1], [2, 2]])
new_points = np.vstack([points, edge_points])
# Calculate Voronoi tessellation
vor = Voronoi(new_points)
return vor
def voronoi_map(vor, size):
# Calculate Voronoi map
vor_map = np.zeros((size, size), dtype=np.uint32)
for i, region in enumerate(vor.regions):
# Skip empty regions and infinte ridge regions
if len(region) == 0 or -1 in region: continue
# Get polygon vertices
x, y = np.array([vor.vertices[i][::-1] for i in region]).T
# Get pixels inside polygon
rr, cc = polygon(x, y)
# Remove pixels out of image bounds
in_box = np.where((0 <= rr) & (rr < size) & (0 <= cc) & (cc < size))
rr, cc = rr[in_box], cc[in_box]
# Paint image
vor_map[rr, cc] = i
return vor_map
# Lloyd's relaxation
def relax(points, size, k=10):
new_points = points.copy()
for _ in range(k):
vor = voronoi(new_points, size)
new_points = []
for i, region in enumerate(vor.regions):
if len(region) == 0 or -1 in region: continue
poly = np.array([vor.vertices[i] for i in region])
center = poly.mean(axis=0)
new_points.append(center)
new_points = np.array(new_points).clip(0, size)
return new_points
def noise_map(size, res, seed, octaves=1, persistence=0.5, lacunarity=2.0):
scale = size/res
return np.array([[
snoise3(
(x+0.1)/scale,
y/scale,
seed,
octaves=octaves,
persistence=persistence,
lacunarity=lacunarity
)
for x in range(size)]
for y in range(size)
])
def average_cells(vor, data):
"""Returns the average value of data inside every voronoi cell"""
size = vor.shape[0]
count = np.max(vor)+1
sum_ = np.zeros(count)
count = np.zeros(count)
for i in range(size):
for j in range(size):
p = vor[i, j]
count[p] += 1
sum_[p] += data[i, j]
average = sum_/ (count + 1e-3)
average[count==0] = 0
return average
def fill_cells(vor, data):
size = vor.shape[0]
image = np.zeros((size, size))
for i in range(size):
for j in range(size):
p = vor[i, j]
image[i, j] = data[p]
return image
def color_cells(vor, data, dtype=int):
size = vor.shape[0]
image = np.zeros((size, size, 3))
for i in range(size):
for j in range(size):
p = vor[i, j]
image[i, j] = data[p]
return image.astype(dtype)
def quantize(data, n):
bins = np.linspace(-1, 1, n+1)
return (np.digitize(data, bins) - 1).clip(0, n-1)
def bezier(x1, y1, x2, y2, a):
p1 = np.array([0, 0])
p2 = np.array([x1, y1])
p3 = np.array([x2, y2])
p4 = np.array([1, a])
return lambda t: ((1-t)**3 * p1 + 3*(1-t)**2*t * p2 + 3*(1-t)*t**2 * p3 + t**3 * p4)
def bezier_lut(x1, y1, x2, y2, a):
t = np.linspace(0, 1, 256)
f = bezier(x1, y1, x2, y2, a)
curve = np.array([f(t_) for t_ in t])
return interp1d(*curve.T)
def filter_map(h_map, smooth_h_map, x1, y1, x2, y2, a, b):
f = bezier_lut(x1, y1, x2, y2, a)
output_map = b*h_map + (1-b)*smooth_h_map
output_map = f(output_map.clip(0, 1))
return output_map
def filter_inbox(pts, size):
inidx = np.all(pts < size, axis=1)
return pts[inidx]
def generate_trees(n, size):
trees = np.random.randint(0, size-1, (n, 2))
trees = relax(trees, size, k=10).astype(np.uint32)
trees = filter_inbox(trees, size)
return trees
def place_trees(river_land_mask, adjusted_height_river_map, n, mask, size, a=0.5):
trees= generate_trees(n, size)
rr, cc = trees.T
output_trees = np.zeros((size, size), dtype=bool)
output_trees[rr, cc] = True
output_trees = output_trees*(mask>a)*river_land_mask*(adjusted_height_river_map<0.5)
output_trees = np.array(np.where(output_trees == 1))[::-1].T
return output_trees
def PCGGen(map_size, nbins = 256, seed = 3407):
biome_names = [
# sand and rock
"desert",
# grass gravel rock stone
"savanna", # mixed woodland and grassland
# trees flower
"tropical_woodland", # rainforest
# dirt grass gravel rock stone
"tundra", # no trees
# trees flower
"seasonal_forest",
# trees
"rainforest",
# trees
"temperate_forest",
# trees
"temperate_rainforest",
# snow rock tree
"boreal_forest" # taiga, snow forest
]
biome_colors = [
[255, 255, 178],
[184, 200, 98],
[188, 161, 53],
[190, 255, 242],
[106, 144, 38],
[33, 77, 41],
[86, 179, 106],
[34, 61, 53],
[35, 114, 94]
]
size = map_size
n = nbins
map_seed = seed
# start generation
points = np.random.randint(0, size, (514, 2))
points = relax(points, size, k=100)
vor = voronoi(points, size)
vor_map = voronoi_map(vor, size)
boundary_displacement = 8
boundary_noise = np.dstack([noise_map(size, 32, 200 + map_seed, octaves=8), noise_map(size, 32, 250 + map_seed, octaves=8)])
boundary_noise = np.indices((size, size)).T + boundary_displacement*boundary_noise
boundary_noise = boundary_noise.clip(0, size-1).astype(np.uint32)
blurred_vor_map = np.zeros_like(vor_map)
for x in range(size):
for y in range(size):
j, i = boundary_noise[x, y]
blurred_vor_map[x, y] = vor_map[i, j]
vor_map = blurred_vor_map
temperature_map = noise_map(size, 2, 10 + map_seed)
precipitation_map = noise_map(size, 2, 20 + map_seed)
uniform_temperature_map = histeq(temperature_map, alpha=0.33)
uniform_precipitation_map = histeq(precipitation_map, alpha=0.33)
temperature_map = uniform_temperature_map
precipitation_map = uniform_precipitation_map
temperature_cells = average_cells(vor_map, temperature_map)
precipitation_cells = average_cells(vor_map, precipitation_map)
quantize_temperature_cells = quantize(temperature_cells, n)
quantize_precipitation_cells = quantize(precipitation_cells, n)
quantize_temperature_map = fill_cells(vor_map, quantize_temperature_cells)
quantize_precipitation_map = fill_cells(vor_map, quantize_precipitation_cells)
temperature_cells = quantize_temperature_cells
precipitation_cells = quantize_precipitation_cells
temperature_map = quantize_temperature_map
precipitation_map = quantize_precipitation_map
im = np.array(Image.open("./assets/biome_image.png"))[:, :, :3]
im = cv2.resize(im, (256, 256))
biomes = np.zeros((256, 256))
for i, color in enumerate(biome_colors):
indices = np.where(np.all(im == color, axis=-1))
biomes[indices] = i
biomes = np.flip(biomes, axis=0).T
n = len(temperature_cells)
biome_cells = np.zeros(n, dtype=np.uint32)
for i in range(n):
temp, precip = temperature_cells[i], precipitation_cells[i]
biome_cells[i] = biomes[temp, precip]
biome_map = fill_cells(vor_map, biome_cells).astype(np.uint32)
biome_color_map = color_cells(biome_map, biome_colors)
height_map = noise_map(size, 4, 0 + map_seed, octaves=6, persistence=0.5, lacunarity=2)
land_mask = height_map > 0
smooth_height_map = noise_map(size, 4, 0 + map_seed, octaves=1, persistence=0.5, lacunarity=2)
biome_height_maps = [
# Desert
filter_map(height_map, smooth_height_map, 0.75, 0.2, 0.95, 0.2, 0.2, 0.5),
# Savanna
filter_map(height_map, smooth_height_map, 0.5, 0.1, 0.95, 0.1, 0.1, 0.2),
# Tropical Woodland
filter_map(height_map, smooth_height_map, 0.33, 0.33, 0.95, 0.1, 0.1, 0.75),
# Tundra
filter_map(height_map, smooth_height_map, 0.5, 1, 0.25, 1, 1, 1),
# Seasonal Forest
filter_map(height_map, smooth_height_map, 0.75, 0.5, 0.4, 0.4, 0.33, 0.2),
# Rainforest
filter_map(height_map, smooth_height_map, 0.5, 0.25, 0.66, 1, 1, 0.5),
# Temperate forest
filter_map(height_map, smooth_height_map, 0.75, 0.5, 0.4, 0.4, 0.33, 0.33),
# Temperate Rainforest
filter_map(height_map, smooth_height_map, 0.75, 0.5, 0.4, 0.4, 0.33, 0.33),
# Boreal
filter_map(height_map, smooth_height_map, 0.8, 0.1, 0.9, 0.05, 0.05, 0.1)
]
biome_count = len(biome_names)
biome_masks = np.zeros((biome_count, size, size))
for i in range(biome_count):
biome_masks[i, biome_map==i] = 1
biome_masks[i] = gaussian_filter(biome_masks[i], sigma=16)
# Remove ocean from masks
blurred_land_mask = land_mask
blurred_land_mask = binary_dilation(land_mask, iterations=32).astype(np.float64)
blurred_land_mask = gaussian_filter(blurred_land_mask, sigma=16)
# biome mask - [9, size, size]
biome_masks = biome_masks*blurred_land_mask
adjusted_height_map = height_map.copy()
for i in range(len(biome_height_maps)):
adjusted_height_map = (1-biome_masks[i])*adjusted_height_map + biome_masks[i]*biome_height_maps[i]
# add rivers
biome_bound = get_boundary(biome_map, size, kernel=5)
cell_bound = get_boundary(vor_map, size, kernel=2)
river_mask = noise_map(size, 4, 4353 + map_seed, octaves=6, persistence=0.5, lacunarity=2) > 0
new_biome_bound = biome_bound*(adjusted_height_map<0.5)*land_mask
new_cell_bound = cell_bound*(adjusted_height_map<0.05)*land_mask
rivers = np.logical_or(new_biome_bound, new_cell_bound)*river_mask
loose_river_mask = binary_dilation(rivers, iterations=8)
rivers_height = gaussian_filter(rivers.astype(np.float64), sigma=2)*loose_river_mask
adjusted_height_river_map = adjusted_height_map*(1-rivers_height) - 0.05*rivers
sea_color = np.array([12, 14, 255])
river_land_mask = adjusted_height_river_map >= 0
land_mask_color = np.repeat(river_land_mask[:, :, np.newaxis], 3, axis=-1)
rivers_biome_color_map = land_mask_color*biome_color_map + (1-land_mask_color)*sea_color
rivers_biome_map = river_land_mask * biome_map + (1 - river_land_mask) * biome_count # use biome count=9 as water indicator
semantic_map = rivers_biome_map
semantic_map_color = rivers_biome_color_map
height_map = adjusted_height_river_map
tree_densities = [4000, 1500, 8000, 1000, 10000, 25000, 10000, 20000, 5000]
trees = [np.array(place_trees(river_land_mask, adjusted_height_river_map, tree_densities[i], biome_masks[i], size)) for i in range(len(biome_names))]
canvas = np.ones((size, size)) * 255
for k in range(len(biome_names)):
canvas[trees[k][:, 1], trees[k][:, 0]] = k
tree_map = canvas
return height_map, semantic_map, tree_map, semantic_map_color
if __name__ == '__main__':
import os
parser = ArgumentParser()
parser.add_argument('--size', type=int, required=True)
parser.add_argument('--nbins', type=int, default=256)
parser.add_argument('--seed', type=int, default=3407)
parser.add_argument('--outdir', type=str, required=True)
args = parser.parse_args()
outdir = args.outdir
heightmap, semanticmap, treemap, colormap = PCGGen(args.size, args.nbins, args.seed)
save_height_map(heightmap, os.path.join(outdir, 'heightmap.png'))
cv2.imwrite(os.path.join(outdir, 'semanticmap.png'), semanticmap.astype(np.uint8))
cv2.imwrite(os.path.join(outdir, 'colormap.png'), colormap[..., [2, 1, 0]].astype(np.uint8))
cv2.imwrite(os.path.join(outdir, 'treemap.png'), treemap)