From f6cbbf9991439fb8ac37b23d5034000a568f09c1 Mon Sep 17 00:00:00 2001 From: LSchueler Date: Sun, 8 Dec 2024 18:45:02 +0100 Subject: [PATCH] Update examples --- examples/11_plurigaussian/00_simple.py | 15 ++++++--- examples/11_plurigaussian/01_pgs.py | 32 ++++++++++++++----- .../11_plurigaussian/02_spatial_relations.py | 10 +++--- examples/11_plurigaussian/03_correlations.py | 10 +++--- 4 files changed, 47 insertions(+), 20 deletions(-) diff --git a/examples/11_plurigaussian/00_simple.py b/examples/11_plurigaussian/00_simple.py index 264c5ea3..7e4b2dfc 100644 --- a/examples/11_plurigaussian/00_simple.py +++ b/examples/11_plurigaussian/00_simple.py @@ -57,9 +57,16 @@ pgs = gs.PGS(dim, [field1, field2], L) ############################################################################### -# Finally, we can plot the PGS, but we will also show the field `L`. +# Finally, we can plot the PGS, but we will also show the field `L` and the two +# original Gaussian fields. -fig, axs = plt.subplots(1, 2) +fig, axs = plt.subplots(2, 2) -axs[0].imshow(L, cmap="copper") -axs[1].imshow(pgs.P, cmap="copper") +axs[0, 0].imshow(field1, cmap="copper") +axs[0, 1].imshow(field2, cmap="copper") +axs[1, 0].imshow(L, cmap="copper") +axs[1, 1].imshow(pgs.P, cmap="copper") + +# For more information on Plurigaussian fields and how they naturally extend +# truncated Gaussian fields, we can recommend the book +# [Plurigaussian Simulations in Geosciences](https://doi.org/10.1007/978-3-642-19607-2) diff --git a/examples/11_plurigaussian/01_pgs.py b/examples/11_plurigaussian/01_pgs.py index e231f0e9..0b0a7f9c 100644 --- a/examples/11_plurigaussian/01_pgs.py +++ b/examples/11_plurigaussian/01_pgs.py @@ -30,6 +30,7 @@ model2 = gs.Gaussian(dim=dim, var=1, len_scale=[1, 20], angles=np.pi / 4) srf2 = gs.SRF(model2, seed=19970221) field2 = srf2.structured([x, y]) +field1 += 5.0 ############################################################################### # Internally, each field's values are mapped along an axis, which can be nicely @@ -69,14 +70,25 @@ # First, we calculate the indices of the L field, which we need for manually # plotting L together with the scatter plot. Normally they are computed internally. +l = np.floor(field1.min()) - 1 +h = np.ceil(field1.max()) + 1 +m = (h + l) / 2.0 +dist = max(np.abs(h - m), np.abs(l - m)) +x_mean = field1.mean() x_l = np.linspace( - np.floor(field1[0].min()) - 1, - np.ceil(field1[0].max()) + 1, + x_mean - dist, + x_mean + dist, L.shape[0], ) + +l = np.floor(field1.min()) - 1 +h = np.ceil(field1.max()) + 1 +m = (h + l) / 2.0 +dist = max(np.abs(h - m), np.abs(l - m)) +y_mean = field2.mean() y_l = np.linspace( - np.floor(field1[1].min()) - 1, - np.ceil(field1[1].max()) + 1, + y_mean - dist, + y_mean + dist, L.shape[1], ) @@ -89,10 +101,14 @@ # And now to some plotting. Unfortunately, matplotlib likes to mess around with # the aspect ratios of the plots, so the left panel is a bit stretched. -fig, axs = plt.subplots(1, 2) -axs[0].scatter(field1.flatten(), field2.flatten(), s=0.1, color="C0") -axs[0].pcolormesh(x_l, y_l, L.T, alpha=0.3) -axs[1].imshow(pgs.P, cmap="copper") +fig, axs = plt.subplots(2, 2) +axs[0, 0].imshow(field1, cmap="copper") +axs[0, 1].imshow(field2, cmap="copper") +axs[1, 0].scatter(field1.flatten(), field2.flatten(), s=0.1, color="C0") +axs[1, 0].pcolormesh(x_l, y_l, L.T, alpha=0.3) + +axs[1, 1].imshow(pgs.P, cmap="copper") +plt.show() ############################################################################### # The black areas show the category 0 and the orange areas show category 1. We diff --git a/examples/11_plurigaussian/02_spatial_relations.py b/examples/11_plurigaussian/02_spatial_relations.py index 5e9cdfdf..320e65ca 100644 --- a/examples/11_plurigaussian/02_spatial_relations.py +++ b/examples/11_plurigaussian/02_spatial_relations.py @@ -87,12 +87,14 @@ pgs = gs.PGS(dim, [field1, field2], L) ############################################################################### -# And now the plotting of `L` and the PGS. +# And now the plotting of the two Gaussian fields, `L`, and the PGS. -fig, axs = plt.subplots(1, 2) +fig, axs = plt.subplots(2, 2) -axs[0].imshow(L, cmap="copper") -axs[1].imshow(pgs.P, cmap="copper") +axs[0, 0].imshow(field1, cmap="copper") +axs[0, 1].imshow(field2, cmap="copper") +axs[1, 0].imshow(L, cmap="copper") +axs[1, 1].imshow(pgs.P, cmap="copper") ############################################################################### # We can see that the two upper light and medium brown rectangles both fill up diff --git a/examples/11_plurigaussian/03_correlations.py b/examples/11_plurigaussian/03_correlations.py index eeef8b4e..98008a2d 100644 --- a/examples/11_plurigaussian/03_correlations.py +++ b/examples/11_plurigaussian/03_correlations.py @@ -53,12 +53,14 @@ pgs = gs.PGS(dim, [field1, field2], L) ############################################################################### -# And now the plotting of `L` and the PGS. +# And now the plotting of the two Gaussian fields, `L`, and the PGS. -fig, axs = plt.subplots(1, 2) +fig, axs = plt.subplots(2, 2) -axs[0].imshow(L, cmap="copper") -axs[1].imshow(pgs.P, cmap="copper") +axs[0, 0].imshow(field1, cmap="copper") +axs[0, 1].imshow(field2, cmap="copper") +axs[1, 0].imshow(L, cmap="copper") +axs[1, 1].imshow(pgs.P, cmap="copper") plt.show() ###############################################################################