-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathApplyGA.py
143 lines (132 loc) · 5.72 KB
/
ApplyGA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import random
import numpy
from numpy.matlib import rand
def sub2ind(array_shape, rows, cols):
ind = rows * array_shape[1] + cols
ind[ind < 0] = -1
ind[ind >= array_shape[0] * array_shape[1]] = -1
return ind
def ApplyGA(GA, Chromosomes, Chromosomes_Fitness): # Because number of chromosomes are not nessesarly GA.populationSize
smallerPopulationSize = len(Chromosomes_Fitness) # Should be even number !
# Selection
if (GA.selection_option == 0): # Tournament
T = rand(smallerPopulationSize, GA.tournament_size) * (
smallerPopulationSize - 1) + 1 # Tournaments(Random from 1 to smallerPopulationSize)
T = numpy.matrix(T).tolist()
x = []
for k in range(len(T)):
l = []
for i in range(len(T[k])):
T[k][i] = round(T[k][i])% len(Chromosomes_Fitness)
l.append(Chromosomes_Fitness[T[k][i]])
x.append(l)
tmp = (numpy.array(x)).max(1)
tmp = tmp.tolist()
idx = []
for i in range(len(tmp)):
idx.append(x[i].index(tmp[i]))
# Index to determine the winners
WinnersIdx = [] # Winners Indeces
for i in range(len(idx)):
WinnersIdx.append(T[i][idx[i]])
elif (GA.selection_option == 1): # Truncation
tmp = Chromosomes_Fitness.copy()
V = numpy.argsort(tmp, kind='mergesort', axis=0).tolist()[::-1]
nbrOfSelections = round(smallerPopulationSize * GA.truncation_percentage / 100) # Number of selected chromosomes
V = V[0:nbrOfSelections] # Winners Pool
x = rand(smallerPopulationSize, 1)
x = x.tolist()
WinnersIdx = []
for i in range(len(x)):
WinnersIdx.append(V[((round(x[i][0]) * (nbrOfSelections - 1)) + 1)%len(V)]) # Winners Indeces
# Crossover
all_parents = []
for i in range(len(WinnersIdx)):
all_parents.append(Chromosomes[WinnersIdx[i]])
x = rand(int(smallerPopulationSize / 2), 1)
x = x.tolist()
first_parents = []
for i in range(len(x)):
for j in range(len(x[i])):
x[i][j] = round(x[i][j] * (smallerPopulationSize - 1) + 1) % len(x[i])
first_parents.append(all_parents[x[i][j]]) # Random smallerPopulationSize / 2 Parents
x = rand(int(smallerPopulationSize / 2), 1)
x = x.tolist()
second_parents = []
for i in range(len(x)):
for j in range(len(x[i])):
x[i][j] = round(x[i][j] * (smallerPopulationSize - 1) + 1) % len(x[i])
second_parents.append(all_parents[x[i][j]]) # Random smallerPopulationSize / 2 Parents
references_matrix = []
for j in range(int(smallerPopulationSize / 2)):
l = []
for i in range(GA.chromosomeLength):
l.append(0)
references_matrix.append(l)
for j in range(int(smallerPopulationSize / 2)):
for i in range(GA.chromosomeLength):
references_matrix[j][
i] = i # = numpy.ones(smallerPopulationSize / 2, 1) [1:GA.chromosomeLength] # The Reference Matrix
randNums = []
x = rand(int(smallerPopulationSize / 2), 1).tolist()
for i in range(len(x)):
for j in range(len(x[i])):
randNums.append((GA.corssoverProb_stdDev_percent * GA.chromosomeLength / 100) * round(
x[i][j]) + GA.corssoverProb_mean_percent * GA.chromosomeLength / 100)
# randNums = min(round(randNums), GA.chromosomeLength) # Truncation
# randNums = max(randNums, 1) # Truncation: Vector of smallerPopulationSize / 2 length of random numbers in range of 1: GA.chromosomeLength
idx = []
for i in range(len(randNums)): # Binary matrix of selected genes for each parents couple
l = []
for j in range(GA.chromosomeLength):
r = 1 * round(randNums[i])
if (r > references_matrix[i][j]):
l.append(1)
else:
l.append(0)
idx.append(l)
Chromosomes_Childs1 = []
Chromosomes_Childs2 = []
for i in range(len(first_parents)):
l = []
l2 = []
for j in range(GA.chromosomeLength):
l.append(0)
l2.append(0)
Chromosomes_Childs1.append(l)
Chromosomes_Childs2.append(l2)
# Do actual corssover
for i in range(len(Chromosomes_Childs1)):
for j in range(len(Chromosomes_Childs1[i])):
if (idx[i][j] == 1):
Chromosomes_Childs1[i][j] = first_parents[i][j]
Chromosomes_Childs2[i][j] = second_parents[i][j]
else:
Chromosomes_Childs1[i][j] = second_parents[i][j]
Chromosomes_Childs2[i][j] = first_parents[i][j]
Chromosomes_Childs = []
for i in range(len(Chromosomes_Childs1)):
Chromosomes_Childs.append(Chromosomes_Childs1[i])
for i in range(len(Chromosomes_Childs2)):
Chromosomes_Childs.append(Chromosomes_Childs2[i])
# Mutation
idx = rand(smallerPopulationSize, GA.chromosomeLength)
idx = idx.tolist()
for i in range(len(idx)): # Indeces for mutations
for j in range(len(idx[i])):
if (idx[i][j] <= GA.mutationProb):
idx[i][j] = 1
else:
idx[i][j] = 0
x = rand(len(idx) * len(idx[0]))
x = x[0].tolist()
mutedValues = []
for i in range(len(x[0])):
mutedValues.append(GA.weightsRange * (2 * x[0][i] - 1))
c = 0
for i in range(len(Chromosomes_Childs)):
for j in range(len(Chromosomes_Childs[i])):
if (idx[i][j] == 1):
Chromosomes_Childs[i][j] = mutedValues[c] # Do actual mutation
c += 1
return Chromosomes_Childs