-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
173 lines (150 loc) · 5.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import numpy as np
import os
from os.path import join
from bayes import GaussianBayes
from utils import load_dataset, plot_scatter_hist
from sklearn.model_selection import train_test_split,KFold,LeaveOneOut
from sklearn import neighbors, datasets
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
MAIN = os.path.abspath(os.path.dirname(__file__))
DATA = join(MAIN, "Data")
def main():
#path = [join(DATA, "data2.csv"), join(DATA, "data3.csv"), join(DATA, "data12.csv")]
path = ["data2.csv","data3.csv","data12.csv"]
#matrice_confu(path,20)
taux_erreur(path)
#cross_validation(path)
#data, labels = load_dataset(join(DATA, path[0]))
#baye_voisin(data,labels,90)
#Ne marche pas, probleme dans les caluls de baye, je n'ai pas trouve de solution
def cross_validation(path):
kf = KFold(n_splits=5)
z = np.zeros(100)
data, labels = load_dataset(join(DATA, path[0]))
data = np.array(data)
labels = np.array(labels)
for train, test in kf.split(data):
"""
train_data = []
train_labels = []
test_data = []
test_labels = []
for indice in train:
train_data.append(data[indice])
train_labels.append(labels[indice])
for indice in test:
test_data.append(data[indice])
test_labels.append(labels[indice])
print(train)
print(test)
train_data = np.array(train_data)
train_labels = np.array(train_labels)
test_data = np.array(test_data)
test_labels = np.array(test_labels)"""
#train_data = data[0:800]
#train_labels = labels[0:800]
#test_data = data[801:999]
#test_labels = labels[801:999]
train_data = data[train]
train_labels = labels[train]
test_data = data[test]
test_labels = labels[test]
print(len(train_data))
print(len(train_labels))
print(len(test_data))
print(len(test_labels))
#print(train_data)
#print(train_labels)
#print(test_data)
#print(test_labels)
# GAUSSIENNE
g = GaussianBayes()
g.fit(train_data, train_labels)
# - Score:
score_baye = g.score(test_data, test_labels)
# K-NN
n_neighbors = 10
clf = neighbors.KNeighborsClassifier(n_neighbors, weights='uniform')
clf.fit(train_data, train_labels)
# - Score:
score_voisin = clf.score(test_data, test_labels)
print(score_voisin)
break
#Parcours de tout les fichiers tests pour le calcul du taux d'erreur
def taux_erreur(path):
#subplot init
t = 321
for p in path:
data, labels = load_dataset(join(DATA,p))
train_size = 20
score_baye = []
score_k_voisin = []
x = []
for i in range(0, 80, 10):
s_bayes, cfx_bayes, s_knn, cfx_knn = baye_voisin(data, labels, train_size+i)
score_baye += [1-s_bayes]
score_k_voisin += [1-s_knn]
x += [train_size + i]
#print(cfx_bayes)
#print(cfx_knn)
#Baye
plt.subplot(t)
plt.plot(x, score_baye, c='red')
plt.title(p)
plt.xlabel("Pourcentage du jeu d'apprentissage")
plt.ylabel("Taux d'echec")
t += 1
#Knn
plt.subplot(t)
plt.plot(x, score_k_voisin, c='blue')
plt.title(p)
plt.xlabel("Pourcentage du jeu d'apprentissage")
plt.ylabel("Taux d'echec")
t += 1
plt.show()
#affichage des matrices de confusions avec 80% d'apprentissage et 20% de test
def matrice_confu(path,train_size):
#subplot init
t = 321
for p in path:
data, labels = load_dataset(join(DATA,p))
s_bayes, cfx_bayes, s_knn, cfx_knn = baye_voisin(data, labels, train_size)
#print(cfx_bayes)
#print(cfx_knn)
plt.subplot(t)
#plt.matshow(cfx_bayes,fignum=0)
plt.imshow(cfx_bayes)
plt.title(p)
#plt.xlabel("Pourcentage du jeu d'apprentissage")
#plt.ylabel("Taux d'echec")
t += 1
plt.subplot(t)
#plt.matshow(cfx_knn,fignum=0)
plt.imshow(cfx_knn,)
plt.title(p)
#plt.xlabel("Pourcentage du jeu d'apprentissage")
#plt.ylabel("Taux d'echec")
t += 1
plt.show()
def baye_voisin(data, labels, ts):
train_data, test_data, train_labels, test_labels = train_test_split(data, labels, train_size = ts / 100, random_state = 42)
print("test taille:",len(test_data)," train test:",len(train_data)," test size: ",ts)
# GAUSSIENNE
g = GaussianBayes()
g.fit(train_data, train_labels)
# - Score:
score_baye = g.score(test_data, test_labels)
Z = g.predict(test_data)
cfmat_bayes = confusion_matrix(test_labels, Z, labels=np.unique(test_labels))
# K-NN
n_neighbors = 10
clf = neighbors.KNeighborsClassifier(n_neighbors, weights='uniform')
clf.fit(train_data, train_labels)
# - Score:
score_voisin = clf.score(test_data, test_labels)
Z = clf.predict(test_data)
cfmat_knn = confusion_matrix(test_labels, Z, labels=np.unique(test_labels))
return score_baye, cfmat_bayes, score_voisin, cfmat_knn
if __name__ == "__main__":
main()