-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
245 lines (218 loc) · 14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is licensed under a Creative Commons
# Attribution-NonCommercial-ShareAlike 4.0 International License.
# You should have received a copy of the license along with this
# work. If not, see http://creativecommons.org/licenses/by-nc-sa/4.0/
"""Train diffusion-based generative model using the techniques described in the
paper "Elucidating the Design Space of Diffusion-Based Generative Models"."""
import os
import re
import json
import click
import torch
import dnnlib
import wandb
from torch_utils import distributed as dist
from training import training_loop
import warnings
warnings.filterwarnings('ignore', 'Grad strides do not match bucket view strides') # False warning printed by PyTorch 1.12.
def parse_int_list(s):
"""Parse a comma separated list of numbers or ranges and return a list of ints. Example: '1,2,5-10' returns
[1, 2, 5, 6, 7, 8, 9, 10]"""
if isinstance(s, list): return s
ranges = []
range_re = re.compile(r'^(\d+)-(\d+)$')
for p in s.split(','):
m = range_re.match(p)
if m:
ranges.extend(range(int(m.group(1)), int(m.group(2)) + 1))
else:
ranges.append(int(p))
return ranges
def parse_tuple(t: tuple[str, ...]):
return [int(e) for e in t]
@click.command()
# Main options.
@click.option('--outdir', help='Where to save the results', metavar='DIR', type=str, required=True)
@click.option('--dataset', help='Dataset Name', metavar='STR', type=str, required=True)
@click.option('--dataset_path', help='Dataset Path', metavar='STR', type=str, required=True)
@click.option('--cond', help='Train class-conditional model', metavar='BOOL', type=bool, default=True, show_default=True)
@click.option('--arch', help='Network architecture', metavar='ddpmpp|ncsnpp|adm', type=click.Choice(['ddpmpp', 'ncsnpp']), default='ddpmpp', show_default=True)
@click.option('--n_train', help='Limit the size of the training dataset', metavar='INT', type=click.IntRange(min=0), default=0, show_default=True)
@click.option('--subclass', help='Restrict dataset to one label subclass', metavar='INT', type=int, default=-1, show_default=True)
# Loss options
@click.option('--sigma_eps', help='Sigma_alpha distribution hyperparameter', metavar='FLOAT',type=click.FloatRange(min=0), show_default=True)
@click.option('--sigma_od_min', help='Minimal value for OD', metavar='FLOAT', type=click.FloatRange(min=0), show_default=True)
@click.option('--sigma_od_max', help='Maximal value for OD', metavar='FLOAT', type=click.FloatRange(min=0), show_default=True)
@click.option('--gamma', help='Exponent of asymptotic correction', metavar='FLOAT', type=click.FloatRange(min=0), show_default=True)
@click.option('--pseudo_label_path', help='Specify path to pseudo labels directly', type=str, default=None, show_default=True)
@click.option('--p_uncond', help='probability to drop condition', type=float, default=0, show_default=True)
# Hyperparameters.
@click.option('--duration', help='Training duration', metavar='KIMG', type=click.FloatRange(min=0, min_open=True), default=200, show_default=True)
@click.option('--batch', help='Total batch size', metavar='INT', type=click.IntRange(min=1), default=512, show_default=True)
@click.option('--batch-gpu', help='Limit batch size per GPU', metavar='INT', type=click.IntRange(min=1))
@click.option('--cbase', help='Channel multiplier [default: varies]', metavar='INT', type=int, default=128, show_default=True)
@click.option('--cres', help='Channels per resolution [default: varies]', metavar='LIST', type=parse_int_list)
@click.option('--lr', help='Learning rate', metavar='FLOAT', type=click.FloatRange(min=0, min_open=True), default=1e-3, show_default=True)
@click.option('--lr_rampup', help='Learning rate rampup', metavar='KIMG', type=click.FloatRange(min=0, min_open=True), default=10000, show_default=True) # duration / 20
@click.option('--ema', help='EMA half-life', metavar='KIMG', type=click.FloatRange(min=0), default=0.5, show_default=True) # was 0.5 MIMG, duration / 400
@click.option('--dropout', help='Dropout probability', metavar='FLOAT', type=click.FloatRange(min=0, max=1), default=0.13, show_default=True)
@click.option('--augment', help='Augment probability', metavar='FLOAT', type=click.FloatRange(min=0, max=1), default=0.12, show_default=True)
@click.option('--xflip', help='Enable dataset x-flips', metavar='BOOL', type=bool, default=False, show_default=True)
# Performance-related.
@click.option('--fp16', help='Enable mixed-precision training', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--ls', help='Loss scaling', metavar='FLOAT', type=click.FloatRange(min=0, min_open=True), default=1, show_default=True)
@click.option('--bench', help='Enable cuDNN benchmarking', metavar='BOOL', type=bool, default=True, show_default=True)
@click.option('--cache', help='Cache dataset in CPU memory', metavar='BOOL', type=bool, default=True, show_default=True)
@click.option('--workers', help='DataLoader worker processes', metavar='INT', type=click.IntRange(min=1), default=1, show_default=True)
# I/O-related.
@click.option('--desc', help='String to include in result dir name', metavar='STR', type=str)
@click.option('--nosubdir', help='Do not create a subdirectory for results', type=bool, default=True)
@click.option('--tick', help='How often to print progress', metavar='KIMG', type=click.IntRange(min=1), default=50, show_default=True)
@click.option('--snap', help='How often to save snapshots', metavar='TICKS', type=click.IntRange(min=1), default=50, show_default=True)
@click.option('--dump', help='How often to dump state', metavar='TICKS', type=click.IntRange(min=1), default=500, show_default=True)
@click.option('--seed', help='Random seed [default: random]', metavar='INT', type=int)
@click.option('--transfer', help='Transfer learning from network pickle', metavar='PKL|URL', type=str)
@click.option('--resume', help='Resume from previous training state', metavar='PT', type=str)
@click.option('-n', '--dry-run', help='Print training options and exit', is_flag=True)
@click.option('--wandb', help='Enable Weights & Biases logging', metavar='BOOL', type=bool, default=False, show_default=True)
def main(**kwargs):
"""Train diffusion-based generative model using the techniques described in the
paper "Elucidating the Design Space of Diffusion-Based Generative Models" and
"Rethinking cluster-conditioned diffusion models".
Examples:
\b
# Train DDPM++ model for class-conditional CIFAR-10 using 8 GPUs
torchrun --standalone --nproc_per_node=8 train.py --outdir=training-runs \\
--data=datasets/cifar10-32x32.zip --cond=1 --arch=ddpmpp
"""
opts = dnnlib.EasyDict(kwargs)
torch.multiprocessing.set_start_method('spawn')
dist.init()
dataset_path = opts.dataset_path
# Initialize config dict.
c = dnnlib.EasyDict()
c.dataset_kwargs = dnnlib.EasyDict(class_name='training.dataset.ImageFolderDataset', path=dataset_path,
pseudo_label_path=opts.pseudo_label_path, use_labels=opts.cond, xflip=opts.xflip,
cache=opts.cache, subclass=opts.subclass, p_uncond=opts.p_uncond)
c.data_loader_kwargs = dnnlib.EasyDict(pin_memory=True, num_workers=opts.workers, prefetch_factor=2)
c.network_kwargs = dnnlib.EasyDict()
c.loss_kwargs = dnnlib.EasyDict()
c.optimizer_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', lr=opts.lr, betas=[0.9,0.999], eps=1e-8)
c.lr_rampup_kimg = opts.lr_rampup
try:
dataset_obj = dnnlib.util.construct_class_by_name(**c.dataset_kwargs)
n_train = len(dataset_obj) if opts.n_train == 0 else opts.n_train
if opts.batch > n_train:
opts.batch = n_train
dist.print0(f'UserWarning: Batch size {opts.batch} cannot exceed dataset size {n_train}, reducing to {n_train}.')
dataset_name = dataset_obj.name
if n_train != 0 and n_train != dataset_obj.raw_shape[0]:
dist.print0(f'Limiting dataset size to {n_train} samples.')
c.dataset_kwargs.max_size = n_train
del dataset_obj # conserve memory
except IOError as err:
raise click.ClickException(f'--data: {err}')
# Network architecture.
if opts.arch == 'ddpmpp':
c.network_kwargs.update(embedding_type='positional', encoder_type='standard', decoder_type='standard')
c.network_kwargs.update(channel_mult_noise=1, resample_filter=[1,1], model_channels=opts.cbase, channel_mult=[2,2,2])
else:
assert opts.arch == 'ncsnpp'
c.network_kwargs.update(embedding_type='fourier', encoder_type='residual', decoder_type='standard')
c.network_kwargs.update(channel_mult_noise=2, resample_filter=[1,3,3,1], model_channels=opts.cbase, channel_mult=[2,2,2])
# Preconditioning & loss function.
c.network_kwargs.class_name = 'training.networks.EDMPrecond'
c.loss_kwargs.class_name = 'training.loss.EDMLoss'
# Network options.
if opts.cres is not None:
c.network_kwargs.channel_mult = opts.cres
if opts.augment:
c.augment_kwargs = dnnlib.EasyDict(class_name='training.augment.AugmentPipe', p=opts.augment)
c.augment_kwargs.update(xflip=1e8, yflip=1, scale=1, rotate_frac=1, aniso=1, translate_frac=1)
c.network_kwargs.augment_dim = 9
c.network_kwargs.update(dropout=opts.dropout, use_fp16=opts.fp16)
# Training options.
c.total_kimg = max(int(opts.duration * 1000), 1)
c.ema_halflife_kimg = int(opts.ema * 1000)
c.update(batch_size=opts.batch, batch_gpu=opts.batch_gpu)
c.update(loss_scaling=opts.ls, cudnn_benchmark=opts.bench)
c.update(kimg_per_tick=opts.tick, snapshot_ticks=opts.snap, state_dump_ticks=opts.dump)
# Random seed.
if opts.seed is not None:
c.seed = opts.seed
else:
seed = torch.randint(1 << 31, size=[], device=torch.device('cuda'))
torch.distributed.broadcast(seed, src=0)
c.seed = int(seed)
# Transfer learning and resume.
if opts.transfer is not None:
if opts.resume is not None:
raise click.ClickException('--transfer and --resume cannot be specified at the same time')
c.resume_pkl = opts.transfer
c.ema_rampup_ratio = None
elif opts.resume is not None:
match = re.fullmatch(r'training-state-(\d+).pt', os.path.basename(opts.resume))
if not match or not os.path.isfile(opts.resume):
raise click.ClickException('--resume must point to training-state-*.pt from a previous training run')
c.resume_pkl = os.path.join(os.path.dirname(opts.resume), f'network-snapshot-{match.group(1)}.pkl')
c.resume_kimg = int(match.group(1))
c.resume_state_dump = opts.resume
# Description string.
cond_str = 'cond' if c.dataset_kwargs.use_labels else 'uncond'
desc = f'{dataset_name:s}-{cond_str:s}'
if opts.desc is not None:
desc = f'{opts.desc}_{desc}'
# Pick output directory.
if dist.get_rank() != 0:
c.run_dir = None
elif opts.nosubdir:
c.run_dir = opts.outdir
cur_run_id = None
else:
prev_run_dirs = []
if os.path.isdir(opts.outdir):
prev_run_dirs = [x for x in os.listdir(opts.outdir) if os.path.isdir(os.path.join(opts.outdir, x))]
prev_run_ids = [re.match(r'^\d+', x) for x in prev_run_dirs]
prev_run_ids = [int(x.group()) for x in prev_run_ids if x is not None]
cur_run_id = max(prev_run_ids, default=-1) + 1
c.run_dir = os.path.join(opts.outdir, f'{cur_run_id:05d}-{desc}')
assert not os.path.exists(c.run_dir)
# wandb init
if opts.wandb and dist.get_rank() == 0:
os.environ["WANDB_API_KEY"] = ... # Put your wandb API key here
wandb.init(project="CEDM", entity=None, group=None) # optionally specify an entity and group here
wandb.run.name = '_'.join(c.run_dir.split('/')[6:])
wandb.config.update(opts)
c.use_wandb = True
# Print options.
dist.print0()
dist.print0('Training options:')
dist.print0(json.dumps(c, indent=2))
dist.print0()
dist.print0(f'Output directory: {c.run_dir}')
dist.print0(f'Dataset path: {c.dataset_kwargs.path}')
dist.print0(f'Class-conditional: {c.dataset_kwargs.use_labels}')
dist.print0(f'Pseudo label path: {opts.pseudo_label_path}')
dist.print0(f'Network architecture: {opts.arch}')
dist.print0(f'Number of GPUs: {dist.get_world_size()}')
dist.print0(f'Batch size: {c.batch_size}')
dist.print0(f'Mixed-precision: {c.network_kwargs.use_fp16}')
dist.print0(f'Seed: {c.seed}')
dist.print0()
# Dry run?
if opts.dry_run:
dist.print0('Dry run; exiting.')
return
# Create output directory.
dist.print0('Creating output directory...')
if dist.get_rank() == 0:
os.makedirs(c.run_dir, exist_ok=True)
with open(os.path.join(c.run_dir, 'training_options.json'), 'wt') as f:
json.dump(c, f, indent=2)
dnnlib.util.Logger(file_name=os.path.join(c.run_dir, 'log.txt'), file_mode='a', should_flush=True)
# Train.
training_loop.training_loop(**c)
if __name__ == "__main__":
main()