-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheval_v2.py
222 lines (182 loc) · 8.75 KB
/
eval_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# 不再使用 <|startofsmiles|> 分割,使用 assistant
import sys
import os
import re
# print(os.path.abspath('../'))
sys.path.append(os.path.abspath('../'))
# 指定CUDA设备号
# os.environ["CUDA_VISIBLE_DEVICES"] = "7" # 使用第一个GPU
import torch
import pandas as pd
from peft import PeftModel
from transformers import BitsAndBytesConfig, GenerationConfig
from transformers import LlamaTokenizer, LlamaForCausalLM
from transformers import GPT2LMHeadModel, GPT2Tokenizer, GPT2Config
from load_data import load_eval_data
from utils import get_parse, setup_seed, analysis_mol, metric_MOSS, write_metrics, visualize_by_html, merge_lora_weights
args = get_parse()
setup_seed(args.seed)
if args.backbone == 'llama-7b':
# 模型名称
# model_name_or_path = "model_weights/backbones/Llama-2-7b-chat-hf"
# model_name_or_path = args.model_name_or_path
# model_name_or_path = "model_weights/checkpoints/llama-7b_lora_ft_v0/checkpoint-320000-merged"
model_name_or_path = f"model_weights/checkpoints/{args.backbone}_{args.training_strategy}/checkpoint-{args.checkpoint}-merged"
# 下载并加载分词器
tokenizer = LlamaTokenizer.from_pretrained(model_name_or_path)
tokenizer.add_special_tokens({"pad_token":"[PAD]"})
tokenizer.padding_side = 'right' # decoder only 一般pad在左边,encoder pad在右边
if args.quantify == '4bit':
compute_dtype = getattr(torch, "float16")
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="fp4",
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=True,
)
model = LlamaForCausalLM.from_pretrained(model_name_or_path, quantization_config=bnb_config, device_map=args.device)
elif args.quantify == '8bit':
bnb_config = BitsAndBytesConfig(
load_in_8bit=True
)
model = LlamaForCausalLM.from_pretrained(model_name_or_path, quantization_config=bnb_config, device_map=args.device)
else:
if args.bf16:
model = LlamaForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.bfloat16, device_map=args.device)
elif args.fp16:
model = LlamaForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16, device_map=args.device)
else:
model = LlamaForCausalLM.from_pretrained(model_name_or_path, device_map=args.device)
model.resize_token_embeddings(len(tokenizer)) #Resize the embeddings
model.config.pad_token_id = tokenizer.pad_token_id #Configure the pad token in the model
# model.config.use_cache = False # Gradient checkpointing is used by default but not compatible with caching
# if 'lora' in args.training_strategy:
# peft_checkpoint = f"model_weights/checkpoints/{args.backbone}_{args.training_strategy}/checkpoint-{args.checkpoint}"
# merged_model = PeftModel.from_pretrained(model, peft_checkpoint, device_map=args.device)
# eval_model=merged_model
# # merge_lora_weights(model, peft_checkpoint)
# else:
# eval_model = model
eval_model = model
elif args.backbone == 'gpt2':
model_name_or_path = f"model_weights/checkpoints/{args.backbone}_{args.training_strategy}/checkpoint-{args.checkpoint}"
# model_name_or_path2 = f"model_weights/checkpoints/gpt2_sft/checkpoint-160000"
tokenizer = GPT2Tokenizer.from_pretrained(model_name_or_path)
tokenizer.padding_side = 'right' # decoder only 一般pad在左边,encoder pad在右边
if args.quantify == '4bit':
compute_dtype = getattr(torch, "float16")
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="fp4",
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=True,
)
model = GPT2LMHeadModel.from_pretrained(model_name_or_path, quantization_config=bnb_config, device_map=args.device)
elif args.quantify == '8bit':
bnb_config = BitsAndBytesConfig(
load_in_8bit=True
)
model = GPT2LMHeadModel.from_pretrained(model_name_or_path, quantization_config=bnb_config, device_map=args.device)
else:
model = GPT2LMHeadModel.from_pretrained(model_name_or_path, device_map=args.device)
model.config.pad_token_id = tokenizer.pad_token_id
model.config.use_cache = False
eval_model = model
def generate(instruction):
tmp_smiles_list = []
if args.backbone in ['llama-7b'] or args.training_strategy in ['ft','sft']:
# prompt = f"### Human: {instruction} Give me the possible SMILES. \n### Assistant:"
prompt = f"### Human: {instruction} \n### Assistant:"
else:
# prompt = f"### Human: {instruction} Give me the possible SMILES. "
prompt = f"### Human: {instruction}"
inputs = tokenizer(prompt, return_tensors="pt")
# print(inputs["input_ids"])
# print(tokenizer.decode(inputs["input_ids"][0]))
input_ids = inputs["input_ids"].to(args.device)
# generation_output = merged_model.generate(
# do_sample=True,
# input_ids=input_ids,
# generation_config=GenerationConfig(temperature=1.0, top_p=0.95, top_k=5),
# return_dict_in_generate=True,
# output_scores=True,
# max_new_tokens=256,
# pad_token_id=tokenizer.pad_token_id,
# num_return_sequences = 5
# )
generation_output = eval_model.generate(
input_ids,
do_sample=True,
temperature=args.T,
top_k=args.top_k,
max_length = 256,
top_p=args.top_p,
num_return_sequences = args.return_num,
pad_token_id = tokenizer.pad_token_id,
return_dict_in_generate=True
)
for seq in generation_output.sequences:
output = tokenizer.decode(seq, skip_special_tokens=True)
print("\n", output)
# print(output.split("### Assistant: "))
smiles = output.split("### Assistant: ")[-1].strip()
tmp_smiles_list.append(smiles)
# print("ouput:", smiles)
return tmp_smiles_list
outputs = []
eval_dataset = load_eval_data(args)
for eval_data in eval_dataset:
tmp_smiles_list = generate(eval_data['desc'])
for smiles in tmp_smiles_list:
# IsValid, QED, LogP, SAs = analysis_mol(smiles)
outputs.append({
'prompt':eval_data['desc'],
'smiles':smiles,
# 'IsValid':IsValid,
# 'QED':QED,
# 'LogP':LogP,
# 'SAs':SAs
})
# df_outputs = pd.DataFrame(outputs)
# save_name = f'./outputs/output_{args.backbone}_{args.training_strategy}_{args.eval_type}.csv'
# df_outputs.to_csv(save_name, index=False)
# valid_ratio, unique_ratio = metric_MOSS(outputs)
# print(f"Valid: {valid_ratio}, Unique: {unique_ratio}")
del model
del eval_model
############################################ FG retrival ###############################################
fg_model_path = './model_weights/smiles2iupac'
fg_tokenizer = GPT2Tokenizer.from_pretrained(fg_model_path) #gpt2-medium
fg_configuration = GPT2Config.from_pretrained(fg_model_path, output_hidden_states=False)
fg_model = GPT2LMHeadModel.from_pretrained(fg_model_path, config=fg_model_path)
fg_model.to(args.device)
fg_model.eval()
for i in range(len(outputs)):
smiles = outputs[i]['smiles']
encodings_dict = fg_tokenizer('<|startoftext|>' + '<|startofsmiles|>' + smiles + '<|startofiupac|>')
input_ids = torch.tensor(encodings_dict['input_ids']).unsqueeze(0).to(args.device)
iupac_outputs = fg_model.generate(
input_ids,
# do_sample=True,
# temperature=1,
# top_k=10,
# top_p=args.top_p,
num_beams = 5,
max_length = 256,
num_return_sequences=5,
pad_token_id = fg_tokenizer.pad_token_id,
return_dict_in_generate=True
)
for seq in iupac_outputs.sequences:
output = fg_tokenizer.decode(seq, skip_special_tokens=True)
iupac = output.split("<|startofiupac|>")[-1].strip()
fg_list = re.split("[\s\[\],\(\)-.;]",iupac)
filtered_fg_list = [item for item in fg_list if len(item)>1 and item[0].isnumeric() is False]
print(iupac,filtered_fg_list)
if 'fgs' in outputs[i]:
outputs[i]['fgs'].extend(filtered_fg_list)
else:
outputs[i]['fgs'] = filtered_fg_list
df_outputs = pd.DataFrame(outputs)
save_name = f'./outputs/output_{args.backbone}_{args.training_strategy}_{args.eval_type}.csv'
df_outputs.to_csv(save_name, index=False)