-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSegNAFNet_arch.py
217 lines (166 loc) · 7.63 KB
/
SegNAFNet_arch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# ------------------------------------------------------------------------
# Copyright (c) 2022 megvii-model. All Rights Reserved.
# ------------------------------------------------------------------------
'''
Simple Baselines for Image Restoration
@article{chen2022simple,
title={Simple Baselines for Image Restoration},
author={Chen, Liangyu and Chu, Xiaojie and Zhang, Xiangyu and Sun, Jian},
journal={arXiv preprint arXiv:2204.04676},
year={2022}
}
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
from basicsr.models.archs.seg_local_arch import Seg_Local_Base
from basicsr.models.archs.NAFNet_arch import NAFBlock
class SegNAFNet(nn.Module):
def __init__(self, img_channel=3, seg_channel=3, width=16, middle_blk_num=1, mask_dropout = 0.5, enc_blk_nums=[], dec_blk_nums=[]):
super().__init__()
self.img_channel = img_channel
self.mask_dropout = mask_dropout
self.pre_seg = nn.Conv2d(in_channels=img_channel, out_channels=seg_channel, kernel_size=3, padding=1, stride=1, groups=1,
bias=True)
self.pre_seg_in = nn.Conv2d(in_channels=seg_channel, out_channels=seg_channel, kernel_size=1, padding=0, stride=1, groups=1,
bias=True)
self.intro = nn.Conv2d(in_channels=img_channel+seg_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1,
bias=True)
self.ending = nn.Conv2d(in_channels=width, out_channels=img_channel, kernel_size=3, padding=1, stride=1, groups=1,
bias=True)
self.encoders = nn.ModuleList()
self.decoders = nn.ModuleList()
self.middle_blks = nn.ModuleList()
self.ups = nn.ModuleList()
self.downs = nn.ModuleList()
chan = width
for num in enc_blk_nums:
self.encoders.append(
nn.Sequential(
*[NAFBlock(chan) for _ in range(num)]
)
)
self.downs.append(
nn.Conv2d(chan, 2*chan, 2, 2)
)
chan = chan * 2
self.middle_blks = \
nn.Sequential(
*[NAFBlock(chan) for _ in range(middle_blk_num)]
)
for num in dec_blk_nums:
self.ups.append(
nn.Sequential(
nn.Conv2d(chan, chan * 2, 1, bias=False),
nn.PixelShuffle(2)
)
)
chan = chan // 2
self.decoders.append(
nn.Sequential(
*[NAFBlock(chan) for _ in range(num)]
)
)
self.padder_size = 2 ** len(self.encoders)
def mask_average(self, image, masks, dropout, is_training=True):
"""
Compute the average value for each mask area in the image and assign it to the entire mask area.
Parameters:
- image (torch.Tensor): A tensor of shape (C, H, W) representing an image.
- masks (torch.Tensor): A tensor of shape (M, 1, H, W) representing M masks.
Returns:
- result (torch.Tensor): A tensor of shape (C, H, W) with the same shape as the input image,
containing the average values for each mask area.
"""
image = image.permute(1, 2, 0)
# Expand image shape to (1, H, W, C)
image_exp = image.unsqueeze(0)
# Expand masks shape to (M, H, W, 1)
masks_exp = masks.squeeze(1).unsqueeze(-1)
# Dropout some masks
if is_training:
M = masks_exp.shape[0]
drop_count = int(dropout * M)
drop_indices = torch.randperm(M)[:drop_count]
masks_exp[drop_indices] = 0
# Compute the area of each mask (sum over H, W dimensions)
mask_areas = masks_exp.sum(dim=(1, 2), keepdim=True)
# Compute the sum of pixel values in each mask area (sum over H, W dimensions)
masked_sums = (image_exp * masks_exp).sum(dim=(1, 2), keepdim=True)
# Compute the average pixel value in each mask area (broadcast over H, W, C dimensions)
avg_values = masked_sums / (mask_areas + 1e-8)
# Initialize the result tensor with zeros
result = torch.zeros_like(image)
# Update the result tensor with the average values (broadcast over H, W dimensions)
result = (avg_values * masks_exp).sum(dim=0)
# Create a mask for uncoverd area
remaining_mask = 1 - masks_exp.sum(dim=0, keepdim=True).clamp_(0, 1)
remaining_area = remaining_mask.sum()
remaining_sum = (image_exp * remaining_mask).sum(dim=(1, 2), keepdim=True)
remaining_avg = remaining_sum / (remaining_area + 1e-8)
result += (remaining_avg * remaining_mask).squeeze(0)
result = result.permute(2, 0, 1)
return result
def forward(self, inp, masks):
B, C, H, W = inp.shape
inp = self.check_image_size(inp)
seg_info = self.pre_seg(inp)
seg_info = self.pre_seg_in(seg_info)
#seg_info = F.relu(seg_info)
for b in range(B):
seg_info[b] = self.mask_average(seg_info[b], self.check_mask_size(masks[b]), dropout=self.mask_dropout, is_training=self.training)
x = self.intro(torch.cat([inp, seg_info], dim=1))
encs = []
for encoder, down in zip(self.encoders, self.downs):
x = encoder(x)
encs.append(x)
x = down(x)
x = self.middle_blks(x)
for decoder, up, enc_skip in zip(self.decoders, self.ups, encs[::-1]):
x = up(x)
x = x + enc_skip
x = decoder(x)
x = self.ending(x)
x = x[:, :self.img_channel, :H, :W] + inp[:, :self.img_channel, :H, :W]
return x
def check_mask_size(self, mask):
# Assuming mask has shape [M, 1, H, W]
M, C, H, W = mask.size()
mod_pad_h = (self.padder_size - H % self.padder_size) % self.padder_size
mod_pad_w = (self.padder_size - W % self.padder_size) % self.padder_size
# Pad the mask using constant padding of 0
mask_padded = F.pad(mask, (0, mod_pad_w, 0, mod_pad_h), mode='constant', value=0)
return mask_padded
def check_image_size(self, x):
_, _, h, w = x.size()
mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size
mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h))
return x
class SegNAFNetLocal(Seg_Local_Base, SegNAFNet):
def __init__(self, *args, train_size=(1, 3, 256, 256), fast_imp=False, **kwargs):
Seg_Local_Base.__init__(self)
SegNAFNet.__init__(self, *args, **kwargs)
N, C, H, W = train_size
base_size = (int(H * 1.5), int(W * 1.5))
self.eval()
with torch.no_grad():
self.convert(base_size=base_size, train_size=train_size, fast_imp=fast_imp)
if __name__ == '__main__':
img_channel = 3
seg_channel = 3
width = 32
# enc_blks = [2, 2, 4, 8]
# middle_blk_num = 12
# dec_blks = [2, 2, 2, 2]
enc_blks = [1, 1, 1, 28]
middle_blk_num = 1
dec_blks = [1, 1, 1, 1]
net = SegNAFNet(img_channel=img_channel, seg_channel=seg_channel, width=width, middle_blk_num=middle_blk_num,
enc_blk_nums=enc_blks, dec_blk_nums=dec_blks)
inp_shape = (4, 256, 256)
from ptflops import get_model_complexity_info
macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=False)
params = float(params[:-3])
macs = float(macs[:-4])
print(macs, params)