-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathex4.py
497 lines (437 loc) · 23.3 KB
/
ex4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
"""
In this exercise you will be guided through the steps discussed in class to perform automatic "Stereo
Mosaicking". The input of such an algorithm is a sequence of images scanning a scene from left to right
(due to camera rotation and/or translation - we assume rigid transform between images), with signicant
overlap in the eld of view of consecutive frames. This exercise covers the following steps:
• Registration: The geometric transformation between each consecutive image pair is found by detecting
Harris feature points, extracting their MOPS-like descriptors, matching these descriptors
between the pair and tting a rigid transformation that agrees with a large set of inlier matches
using the RANSAC algorithm.
• Stitching: Combining strips from aligned images into a sequence of panoramas. Global motion will
be compensated, and the residual parallax, as well as other motions will become visible.
"""
import numpy as np
import os
import matplotlib.pyplot as plt
from scipy.ndimage.morphology import generate_binary_structure
from scipy.ndimage.filters import maximum_filter
from scipy.ndimage import label, center_of_mass, map_coordinates, convolve
import shutil
from imageio import imwrite
import sol4_utils
GRAYSCALE = 1
FILTER_SIZE = 7
MAX_LEVELS = 3
MIN_SCORE = 0.7
DESC_RAD = 3
N = 7
M = 7
RADIUS = 10
NUM_ITER = 50
INLIER_TOL = 49
def harris_corner_detector(im):
"""
Detects harris corners.
Make sure the returned coordinates are x major!!!
:param im: A 2D array representing an image.
:return: An array with shape (N,2), where ret[i,:] are the [x,y] coordinates of the ith corner points.
"""
deriv_vec = np.asarray([1, 0, -1]).reshape(1, 3)
x_deriv = convolve(im, deriv_vec)
y_deriv = convolve(im, deriv_vec.T)
blur_x_squared = sol4_utils.blur_spatial(x_deriv * x_deriv, FILTER_SIZE)
blur_y_squared = sol4_utils.blur_spatial(y_deriv * y_deriv, FILTER_SIZE)
blur_xy = sol4_utils.blur_spatial(x_deriv * y_deriv, FILTER_SIZE)
M_det = blur_x_squared * blur_y_squared - blur_xy * blur_xy
M_trace = blur_y_squared + blur_y_squared
R = M_det - 0.04 * (M_trace * M_trace) # response image
R_local_max = non_maximum_suppression(R)
all_true_values = np.argwhere(R_local_max)
return np.flip(all_true_values, axis=1) # ordered as [column,row] i.e. [x,y]
def sample_descriptor(im, pos, desc_rad):
"""
Samples descriptors at the given corners.
:param im: A 2D array representing an image. (the 3rd lvl of the gaussian pyramid)
:param pos: An array with shape (N,2), where pos[i,:] are the [x,y] coordinates of the ith corner point.
:param desc_rad: "Radius" of descriptors to compute.
:return: A 3D array with shape (N,K,K) containing the ith descriptor at desc[i,:,:].
"""
N = len(pos[:, 0])
k = 1 + 2 * desc_rad
result = np.empty((N, k, k))
for i in range(N): # iterating over all corner points
x, y = pos[i][0], pos[i][1]
index = np.array([(y + j, x + k) for j in range(-desc_rad, desc_rad + 1)
for k in range(-desc_rad, desc_rad + 1)]).T
descriptor = (map_coordinates(im, index, order=1, prefilter=False)).reshape(k, k)
vec = descriptor - np.mean(descriptor)
descriptor = vec
norm = np.linalg.norm(vec)
if norm: descriptor /= norm # avoiding zero division
result[i, :, :] = descriptor
return result
def find_features(pyr):
"""
Detects and extracts feature points from a pyramid.
:param pyr: Gaussian pyramid of a grayscale image having 3 levels.
:return: A list containing:
1) An array with shape (N,2) of [x,y] feature location per row found in the image.
These coordinates are provided at the pyramid level pyr[0].
2) A feature descriptor array with shape (N,K,K)
"""
features = spread_out_corners(pyr[0], n=N, m=N, radius=RADIUS)
# divide corners by 2^(2-0)=4 to get the relevant index in G_l2:
feature_descriptor = sample_descriptor(pyr[2], features.astype(np.float64) / 4.0, desc_rad=DESC_RAD)
return [features, feature_descriptor]
def match_features(desc1, desc2, min_score):
"""
Return indices of matching descriptors.
:param desc1: A feature descriptor array with shape (N1,K,K).
:param desc2: A feature descriptor array with shape (N2,K,K).
:param min_score: Minimal match score.
:return: A list containing:
1) An array with shape (M,) and dtype int of matching indices in desc1.
2) An array with shape (M,) and dtype int of matching indices in desc2.
"""
mult = desc1[:, np.newaxis] * desc2[np.newaxis, :] # matrix of matrices (N1,N2,k,k)
score = np.sum(mult, axis=(2, 3)) # summing over first k rows, then on k columns - (N1,N2)
cols_2nd_max = (np.partition(score, kth=-2, axis=0)[-2])[np.newaxis, :] # (1,N2)
rows_2nd_max = (np.partition(score, kth=-2, axis=1)[:, -2])[:, np.newaxis] # (N1,1)
is_inlier = (score >= cols_2nd_max) & (score >= rows_2nd_max) & (score >= min_score)
inlier_index = np.flip(np.argwhere(is_inlier), axis=1)
return [inlier_index[:, 1], inlier_index[:, 0]]
def apply_homography(pos1, H12):
"""
Apply homography to inhomogenous points.
:param pos1: An array with shape (N,2) of [x,y] point coordinates.
:param H12: A 3x3 homography matrix.
:return: An array with the same shape as pos1 with [x,y] point coordinates obtained from transforming pos1 using H12.
"""
x_y_one = np.ones((pos1.shape[0], 3))
x_y_one[:, :-1] = pos1 # adding the w dimension (third column) containing ones
x_y_z_T = H12.dot(x_y_one.T) # performs dot product on each (x,y,1) with H12
x_y_z = x_y_z_T.T
z = x_y_z[:, -1][:, np.newaxis] # extracting z values and dividing by them
x_y = (x_y_z / z)[:, :-1] # removing last column to get xy
return x_y
def ransac_homography(points1, points2, num_iter, inlier_tol, translation_only=False):
"""
Computes homography between two sets of points using RANSAC.
:param points1: An array with shape (N,2) containing N rows of [x,y] coordinates of matched points in image 1.
:param points2: An array with shape (N,2) containing N rows of [x,y] coordinates of matched points in image 2.
:param num_iter: Number of RANSAC iterations to perform.
:param inlier_tol: inlier tolerance threshold.
:param translation_only: see estimate rigid transform
:return: A list containing:
1) A 3x3 normalized homography matrix.
2) An Array with shape (S,) where S is the number of inliers,
containing the indices in pos1/pos2 of the maximal set of inlier matches found.
"""
max_p1, max_p2 = None, None
inliers_indexes = None
max_inliers_count = 0
for i in range(num_iter):
rand_index1, rand_index2 = np.random.choice(points1.shape[0], size=2)
p1 = np.array([points1[rand_index1], points1[rand_index2]])
p2 = np.array([points2[rand_index1], points2[rand_index2]])
H12 = estimate_rigid_transform(p1, p2, translation_only)
tran_points1 = apply_homography(points1, H12)
all_distances = (np.linalg.norm(tran_points1 - points2, axis=1)) ** 2
all_distances[all_distances < inlier_tol] = 0 # inliers are marked with zeros
inliers_count = np.count_nonzero(all_distances == 0)
if inliers_count > max_inliers_count:
max_inliers_count = inliers_count
index = np.argwhere(all_distances == 0)
inliers_indexes = index.reshape(index.shape[0], ) # row indexes of inliers
max_p1, max_p2 = p1, p2
final_H12 = estimate_rigid_transform(max_p1, max_p2, translation_only)
return [final_H12, inliers_indexes]
def display_matches(im1, im2, points1, points2, inliers):
"""
Dispalay matching points.
:param im1: A grayscale image.
:param im2: A grayscale image.
:parma points1: An aray shape (N,2), containing N rows of [x,y] coordinates of matched points in im1.
:param points2: An aray shape (N,2), containing N rows of [x,y] coordinates of matched points in im2.
:param inliers: An array with shape (S,) of inlier matches.
"""
all_indexes = np.arange(0, points1.shape[0])
outlier_index = np.setdiff1d(all_indexes, inliers) # all indexes that are not inliers
plt.imshow(np.hstack((im1, im2)), cmap='gray')
inliers_im1, inliers_im2 = points1[inliers], points2[inliers]
in_x1, in_y1 = inliers_im1[:, 0], inliers_im1[:, 1]
in_x2, in_y2 = inliers_im2[:, 0] + im1.shape[1], inliers_im2[:, 1]
outliers_im1, outliers_im2 = points1[outlier_index], points2[outlier_index]
out_x1, out_y1 = outliers_im1[:, 0], outliers_im1[:, 1]
out_x2, out_y2 = outliers_im2[:, 0] + im1.shape[1], outliers_im2[:, 1]
for i in range(len(out_x1)): # plotting ourliers (x1 is chosen arbitrary,they all have the same length)
plt.plot([out_x1[i:i + 2], out_x2[i:i + 2]], [out_y1[i:i + 2], out_y2[i:i + 2]], mfc='r', c='b', lw=.3, ms=5,
marker='.')
for i in range(len(in_x1)): # plotting inliers (x1 is chosen arbitrary,they all have the same length)
plt.plot([in_x1[i:i + 2], in_x2[i:i + 2]], [in_y1[i:i + 2], in_y2[i:i + 2]], mfc='r', c='y', lw=.3, ms=5,
marker='.')
plt.show()
def accumulate_homographies(H_succesive, m):
"""
Convert a list of succesive homographies to a
list of homographies to a common reference frame.
:param H_succesive: A list of M-1 3x3 homography
matrices where H_successive[i] is a homography which transforms points
from coordinate system i to coordinate system i+1.
:param m: Index of the coordinate system towards which we would like to
accumulate the given homographies.
:return: A list of M 3x3 homography matrices,
where H2m[i] transforms points from coordinate system i to coordinate system m
"""
mat_lst = [0] * (len(H_succesive) + 1)
forward_H = np.eye(3)
for i in range(m - 1, -1, -1):
forward_H = forward_H @ H_succesive[i]
mat_lst[i] = (forward_H / forward_H[2, 2])
backward_H = np.eye(3)
for j in range(m, len(H_succesive)):
backward_H = backward_H @ np.linalg.inv(H_succesive[j])
mat_lst[j + 1] = backward_H / backward_H[2, 2]
mat_lst[m] = np.eye(3)
return mat_lst
def compute_bounding_box(homography, w, h):
"""
computes bounding box of warped image under homography, without actually warping the image
:param homography: homography
:param w: width of the image
:param h: height of the image
:return: 2x2 array, where the first row is [x,y] of the top left corner,
and the second row is the [x,y] of the bottom right corner
"""
top_left, top_right, bottom_left, bottom_right = [0, 0], [w - 1, 0], [0, h - 1], [w - 1, h - 1] # as [x,y]
h_coords = apply_homography(np.array([top_left, top_right, bottom_left, bottom_right]), homography)
min_x, min_y = np.min(h_coords[:, 0]), np.min(h_coords[:, 1])
max_x, max_y = np.max(h_coords[:, 0]), np.max(h_coords[:, 1])
return np.array([[min_x, min_y], [max_x, max_y]]).astype(np.int)
def warp_channel(image, homography):
"""
Warps a 2D image with a given homography.
:param image: a 2D image.
:param homography: homography.
:return: A 2d warped image.
"""
width, height = image.shape[1], image.shape[0]
box = compute_bounding_box(homography, width, height)
x, y = np.meshgrid(np.arange(box[0][0], box[1][0] + 1), np.arange(box[0][1], box[1][1] + 1))
coords = np.stack((x, y), axis=-1) # (x_dim,y_dim,2)
coords = coords.reshape(coords.shape[0] * coords.shape[1], 2) # (N,2)
inverse_indexes = (apply_homography(coords, np.linalg.inv(homography))).T # (2,N) ordered as [[y],[x]]
inverse_indexes[[0, 1]] = inverse_indexes[[1, 0]] # (2,N) ordered as [[x],[y]]
warp_im = (map_coordinates(image, inverse_indexes, order=1, prefilter=False))
return warp_im.reshape(y.shape) # back to original image shape
def warp_image(image, homography):
"""
Warps an RGB image with a given homography.
:param image: an RGB image.
:param homography: homograhpy.
:return: A warped image.
"""
return np.dstack([warp_channel(image[..., channel], homography) for channel in range(3)])
def filter_homographies_with_translation(homographies, minimum_right_translation):
"""
Filters rigid transformations encoded as homographies by the amount of translation from left to right.
:param homographies: homograhpies to filter.
:param minimum_right_translation: amount of translation below which the transformation is discarded.
:return: filtered homographies..
"""
translation_over_thresh = [0]
last = homographies[0][0, -1]
for i in range(1, len(homographies)):
if homographies[i][0, -1] - last > minimum_right_translation:
translation_over_thresh.append(i)
last = homographies[i][0, -1]
return np.array(translation_over_thresh).astype(np.int)
def estimate_rigid_transform(points1, points2, translation_only=False):
"""
Computes rigid transforming points1 towards points2, using least squares method.
points1[i,:] corresponds to poins2[i,:]. In every point, the first coordinate is *x*.
:param points1: array with shape (N,2). Holds coordinates of corresponding points from image 1.
:param points2: array with shape (N,2). Holds coordinates of corresponding points from image 2.
:param translation_only: whether to compute translation only. False (default) to compute rotation as well.
:return: A 3x3 array with the computed homography.
"""
centroid1 = points1.mean(axis=0)
centroid2 = points2.mean(axis=0)
if translation_only:
rotation = np.eye(2)
translation = centroid2 - centroid1
else:
centered_points1 = points1 - centroid1
centered_points2 = points2 - centroid2
sigma = centered_points2.T @ centered_points1
U, _, Vt = np.linalg.svd(sigma)
rotation = U @ Vt
translation = -rotation @ centroid1 + centroid2
H = np.eye(3)
H[:2, :2] = rotation
H[:2, 2] = translation
return H
def non_maximum_suppression(image):
"""
Finds local maximas of an image.
:param image: A 2D array representing an image.
:return: A boolean array with the same shape as the input image, where True indicates local maximum.
"""
# Find local maximas.
neighborhood = generate_binary_structure(2, 2)
local_max = maximum_filter(image, footprint=neighborhood) == image
local_max[image < (image.max() * 0.1)] = False
# Erode areas to single points.
lbs, num = label(local_max)
centers = center_of_mass(local_max, lbs, np.arange(num) + 1)
centers = np.stack(centers).round().astype(np.int)
ret = np.zeros_like(image, dtype=np.bool)
ret[centers[:, 0], centers[:, 1]] = True
return ret
def spread_out_corners(im, m, n, radius):
"""
Splits the image im to m by n rectangles and uses harris_corner_detector on each.
:param im: A 2D array representing an image.
:param m: Vertical number of rectangles.
:param n: Horizontal number of rectangles.
:param radius: Minimal distance of corner points from the boundary of the image.
:return: An array with shape (N,2), where ret[i,:] are the [x,y] coordinates of the ith corner points.
"""
corners = [np.empty((0, 2), dtype=np.int)]
x_bound = np.linspace(0, im.shape[1], n + 1, dtype=np.int)
y_bound = np.linspace(0, im.shape[0], m + 1, dtype=np.int)
for i in range(n):
for j in range(m):
# Use Harris detector on every sub image.
sub_im = im[y_bound[j]:y_bound[j + 1], x_bound[i]:x_bound[i + 1]]
sub_corners = harris_corner_detector(sub_im)
sub_corners += np.array([x_bound[i], y_bound[j]])[np.newaxis, :]
corners.append(sub_corners)
corners = np.vstack(corners)
legit = ((corners[:, 0] > radius) & (corners[:, 0] < im.shape[1] - radius) &
(corners[:, 1] > radius) & (corners[:, 1] < im.shape[0] - radius))
ret = corners[legit, :]
return ret
class PanoramicVideoGenerator:
"""
Generates panorama from a set of images.
"""
def __init__(self, data_dir, file_prefix, num_images):
"""
The naming convention for a sequence of images is file_prefixN.jpg,
where N is a running number 001, 002, 003...
:param data_dir: path to input images.
:param file_prefix: see above.
:param num_images: number of images to produce the panoramas with.
"""
self.file_prefix = file_prefix
self.files = [os.path.join(data_dir, '%s%03d.jpg' % (file_prefix, i + 1)) for i in range(num_images)]
self.files = list(filter(os.path.exists, self.files))
self.panoramas = None
self.homographies = None
print('found %d images' % len(self.files))
def align_images(self, translation_only=False):
"""
compute homographies between all images to a common coordinate system
:param translation_only: see estimte_rigid_transform
"""
# Extract feature point locations and descriptors.
points_and_descriptors = []
for file in self.files:
image = sol4_utils.read_image(file, 1)
self.h, self.w = image.shape
pyramid, _ = sol4_utils.build_gaussian_pyramid(image, 3, 7)
points_and_descriptors.append(find_features(pyramid))
# Compute homographies between successive pairs of images.
Hs = []
for i in range(len(points_and_descriptors) - 1):
points1, points2 = points_and_descriptors[i][0], points_and_descriptors[i + 1][0]
desc1, desc2 = points_and_descriptors[i][1], points_and_descriptors[i + 1][1]
# Find matching feature points.
ind1, ind2 = match_features(desc1, desc2, .7)
points1, points2 = points1[ind1, :], points2[ind2, :]
# Compute homography using RANSAC.
H12, inliers = ransac_homography(points1, points2, 100, 6, translation_only)
# Uncomment for debugging: display inliers and outliers among matching points.
# In the submitted code this function should be commented out!
# display_matches(self.images[i], self.images[i+1], points1 , points2, inliers)
Hs.append(H12)
# Compute composite homographies from the central coordinate system.
accumulated_homographies = accumulate_homographies(Hs, (len(Hs) - 1) // 2)
self.homographies = np.stack(accumulated_homographies)
self.frames_for_panoramas = filter_homographies_with_translation(self.homographies,
minimum_right_translation=5)
self.homographies = self.homographies[self.frames_for_panoramas]
def generate_panoramic_images(self, number_of_panoramas):
"""
combine slices from input images to panoramas.
:param number_of_panoramas: how many different slices to take from each input image
"""
assert self.homographies is not None
# compute bounding boxes of all warped input images in the coordinate system of the middle image (as given by the homographies)
self.bounding_boxes = np.zeros((self.frames_for_panoramas.size, 2, 2))
for i in range(self.frames_for_panoramas.size):
self.bounding_boxes[i] = compute_bounding_box(self.homographies[i], self.w, self.h)
# change our reference coordinate system to the panoramas
# all panoramas share the same coordinate system
global_offset = np.min(self.bounding_boxes, axis=(0, 1))
self.bounding_boxes -= global_offset
slice_centers = np.linspace(0, self.w, number_of_panoramas + 2, endpoint=True, dtype=np.int)[1:-1]
warped_slice_centers = np.zeros((number_of_panoramas, self.frames_for_panoramas.size))
# every slice is a different panorama, it indicates the slices of the input images from which the panorama
# will be concatenated
for i in range(slice_centers.size):
slice_center_2d = np.array([slice_centers[i], self.h // 2])[None, :]
# homography warps the slice center to the coordinate system of the middle image
warped_centers = [apply_homography(slice_center_2d, h) for h in self.homographies]
# we are actually only interested in the x coordinate of each slice center in the panoramas' coordinate system
warped_slice_centers[i] = np.array(warped_centers)[:, :, 0].squeeze() - global_offset[0]
panorama_size = np.max(self.bounding_boxes, axis=(0, 1)).astype(np.int) + 1
# boundary between input images in the panorama
x_strip_boundary = ((warped_slice_centers[:, :-1] + warped_slice_centers[:, 1:]) / 2)
x_strip_boundary = np.hstack([np.zeros((number_of_panoramas, 1)),
x_strip_boundary,
np.ones((number_of_panoramas, 1)) * panorama_size[0]])
x_strip_boundary = x_strip_boundary.round().astype(np.int)
self.panoramas = np.zeros((number_of_panoramas, panorama_size[1], panorama_size[0], 3), dtype=np.float64)
for i, frame_index in enumerate(self.frames_for_panoramas):
# warp every input image once, and populate all panoramas
image = sol4_utils.read_image(self.files[frame_index], 2)
warped_image = warp_image(image, self.homographies[i])
x_offset, y_offset = self.bounding_boxes[i][0].astype(np.int)
y_bottom = y_offset + warped_image.shape[0]
for panorama_index in range(number_of_panoramas):
# take strip of warped image and paste to current panorama
boundaries = x_strip_boundary[panorama_index, i:i + 2]
image_strip = warped_image[:, boundaries[0] - x_offset: boundaries[1] - x_offset]
x_end = boundaries[0] + image_strip.shape[1]
self.panoramas[panorama_index, y_offset:y_bottom, boundaries[0]:x_end] = image_strip
# crop out areas not recorded from enough angles
# assert will fail if there is overlap in field of view between the left most image and the right most image
crop_left = int(self.bounding_boxes[0][1, 0])
crop_right = int(self.bounding_boxes[-1][0, 0])
assert crop_left < crop_right, 'for testing your code with a few images do not crop.'
print(crop_left, crop_right)
self.panoramas = self.panoramas[:, :, crop_left:crop_right, :]
def save_panoramas_to_video(self):
assert self.panoramas is not None
out_folder = 'tmp_folder_for_panoramic_frames/%s' % self.file_prefix
try:
shutil.rmtree(out_folder)
except:
print('could not remove folder')
pass
os.makedirs(out_folder)
# save individual panorama images to 'tmp_folder_for_panoramic_frames'
for i, panorama in enumerate(self.panoramas):
imwrite('%s/panorama%02d.png' % (out_folder, i + 1), (panorama * 255).astype(np.uint8))
if os.path.exists('%s.mp4' % self.file_prefix):
os.remove('%s.mp4' % self.file_prefix)
# write output video to current folder
os.system('ffmpeg -framerate 3 -i %s/panorama%%02d.png %s.mp4' %
(out_folder, self.file_prefix))
def show_panorama(self, panorama_index, figsize=(20, 20)):
assert self.panoramas is not None
plt.figure(figsize=figsize)
plt.imshow(self.panoramas[panorama_index].clip(0, 1))
plt.show()