forked from paperswithbacktest/awesome-systematic-trading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrd-expenditures-and-stock-returns.py
195 lines (152 loc) · 6.67 KB
/
rd-expenditures-and-stock-returns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# https://quantpedia.com/strategies/rd-expenditures-and-stock-returns/
#
# The investment universe consists of stocks that are listed on NYSE NASDAQ or AMEX. At the end of April, for each stock in the universe, calculate a measure of total R&D expenditures in the past 5 years scaled by the firm’s Market cap (defined on page 7, eq. 1).
# Go long (short) on the quintile of firms with the highest (lowest) R&D expenditures relative to their Market Cap. Weight the portfolio equally and rebalance next year. The backtested performance of the paper is substituted by our more recent backtest in Quantconnect.
# region imports
from AlgorithmImports import *
from numpy import log, average
from scipy import stats
import numpy as np
# endregion
class RDExpendituresandStockReturns(QCAlgorithm):
def Initialize(self):
self.SetStartDate(1998, 1, 1)
self.SetCash(100000)
self.weight = {}
self.coarse_count = 3000
# R&D history.
self.RD = {}
self.rd_period = 5
self.long = []
self.short = []
data = self.AddEquity("XLK", Resolution.Daily)
data.SetLeverage(10)
self.technology_sector = data.Symbol
self.symbol = self.AddEquity("SPY", Resolution.Daily).Symbol
self.selection_flag = True
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
self.Schedule.On(
self.DateRules.MonthEnd(self.symbol),
self.TimeRules.AfterMarketOpen(self.symbol),
self.Selection,
)
def OnSecuritiesChanged(self, changes):
for security in changes.AddedSecurities:
security.SetLeverage(10)
security.SetFeeModel(CustomFeeModel())
def CoarseSelectionFunction(self, coarse):
if not self.selection_flag:
return Universe.Unchanged
selected = [x.Symbol for x in coarse if x.HasFundamentalData and x.Price > 5]
return selected
def FineSelectionFunction(self, fine):
fine = [
x
for x in fine
if (
x.FinancialStatements.IncomeStatement.ResearchAndDevelopment.TwelveMonths
)
and (x.MarketCap != 0)
and (
(x.SecurityReference.ExchangeId == "NYS")
or (x.SecurityReference.ExchangeId == "NAS")
or (x.SecurityReference.ExchangeId == "ASE")
)
]
# and x.AssetClassification.MorningstarSectorCode == MorningstarSectorCode.Technology]
top_by_market_cap = None
if len(fine) > self.coarse_count:
sorted_by_market_cap = sorted(fine, key=lambda x: x.MarketCap, reverse=True)
top_by_market_cap = sorted_by_market_cap[: self.coarse_count]
else:
top_by_market_cap = fine
fine_symbols = [x.Symbol for x in top_by_market_cap]
ability = {}
updated_flag = [] # updated this year already
for stock in top_by_market_cap:
symbol = stock.Symbol
# prevent storing duplicated value for the same stock in one year
if symbol not in updated_flag:
# Update RD.
if symbol not in self.RD:
self.RD[symbol] = RollingWindow[float](self.rd_period)
# rd = stock.FinancialStatements.IncomeStatement.ResearchAndDevelopment.TwelveMonths
# self.RD[symbol].Add(rd)
if self.RD[symbol].IsReady:
coefs = np.array([1, 0.8, 0.6, 0.4, 0.2])
rds = np.array([x for x in self.RD[symbol]])
rdc = sum(coefs * rds)
ability[stock] = rdc / stock.MarketCap
rd = (
stock.FinancialStatements.IncomeStatement.ResearchAndDevelopment.TwelveMonths
)
self.RD[symbol].Add(rd)
# prevent storing duplicated value for the same stock in one year
if fine_symbols.count(symbol) > 1:
updated_flag.append(symbol)
# Ability market cap weighting.
# total_market_cap = sum([x.MarketCap for x in ability])
# for stock, rdc in ability.items():
# ability[stock] = rdc * (stock.MarketCap / total_market_cap)
# Remove not updated symbols
symbols_to_delete = []
for symbol in self.RD.keys():
if symbol not in fine_symbols:
symbols_to_delete.append(symbol)
for symbol in symbols_to_delete:
if symbol in self.RD:
del self.RD[symbol]
# starts trading after data storing period
if len(ability) != 0:
# Ability sorting.
sorted_by_ability = sorted(
ability.items(), key=lambda x: x[1], reverse=True
)
decile = int(len(sorted_by_ability) / 5)
high_by_ability = [x[0].Symbol for x in sorted_by_ability[:decile]]
low_by_ability = [x[0].Symbol for x in sorted_by_ability[-decile:]]
self.long = high_by_ability
self.short = low_by_ability
# self.short = [self.technology_sector]
return self.long + self.short
def Selection(self):
if self.Time.month == 4:
self.selection_flag = True
def OnData(self, data):
if not self.selection_flag:
return
self.selection_flag = False
# Trade execution.
long_count = len(self.long)
short_count = len(self.short)
stocks_invested = [x.Key for x in self.Portfolio if x.Value.Invested]
for symbol in stocks_invested:
if symbol not in self.long + self.short:
self.Liquidate(symbol)
for symbol in self.long:
if (
self.Securities[symbol].Price != 0
and self.Securities[symbol].IsTradable
):
self.SetHoldings(symbol, 1 / long_count)
for symbol in self.short:
if (
self.Securities[symbol].Price != 0
and self.Securities[symbol].IsTradable
):
self.SetHoldings(symbol, -1 / short_count)
self.long.clear()
self.short.clear()
class SymbolData:
def __init__(self, tested_growth, period):
self.TestedGrowth = tested_growth
self.RD = RollingWindow[float](period)
def update(self, window_value):
self.RD.Add(window_value)
def is_ready(self):
return self.RD.IsReady
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))