-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.cpp
223 lines (166 loc) · 3.63 KB
/
utils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <math.h>
#include <cstdlib>
#include <random>
#include <fstream>
#include <algorithm>
#include <iostream>
#include "utils.hpp"
//create matrix from file
func_ret_t create_matrix_from_file(float **mp, const char* filename, int *size_p){
int i, j, size;
float *m;
FILE *fp = NULL;
fp = fopen(filename, "rb");
if ( fp == NULL) {
return RET_FAILURE;
}
fscanf(fp, "%d\n", &size);
m = (float*) malloc(sizeof(float)*size*size);
if ( m == NULL) {
fclose(fp);
return RET_FAILURE;
}
for (i=0; i < size; i++) {
for (j=0; j < size; j++) {
fscanf(fp, "%f ", m+i*size+j);
}
}
fclose(fp);
*size_p = size;
*mp = m;
return RET_SUCCESS;
}
//create sparse matrix from file
func_ret_t create_sparse_matrix_from_file(int **rp, int **cp, float **vp, const char* filename, int *nnz, int *size_p){
int i, j, size;
int *r, *c ;
float *v;
std::ifstream fin(filename);
if ( fin.fail()) {
return RET_FAILURE;
}
fin >> i >> size >> *nnz;
j = *nnz;
r = (int*) malloc(sizeof(int)*j);
c = (int*) malloc(sizeof(int)*j);
v = (float*) malloc(sizeof(float)*j);
if ( r == NULL || c == NULL || v == NULL ) {
fin.close();
return RET_FAILURE;
}
for (i=1; i <= j; i++) {
fin >> c[i-1] >> r[i-1] >> v[i-1];
}
fin.close();
*size_p = size;
*rp = r;
*cp = c;
*vp = v;
return RET_SUCCESS;
}
// create dense random matrix
func_ret_t create_matrix(float * __restrict__ * mp, int size){
float * m;
int i,j;
std::random_device dev;
std::mt19937 rng(dev());
std::uniform_real_distribution<float> dist_uniform(0,1);
float lamda = -0.001;
float coe[2*size-1];
float coe_i =0.0;
for (i=0; i < size; i++)
{
coe_i = 10*exp(lamda*i);
j=size-1+i;
coe[j]=coe_i;
j=size-1-i;
coe[j]=coe_i;
}
m = (float*) malloc(sizeof(float)*size*size);
if ( m == NULL) {
return RET_FAILURE;
}
for (i=0; i < size; i++) {
for (j=i; j < size; j++) {
m[i*size+j]=coe[size-1-i+j];
// dtype ran = dist_uniform(rng);
// m[i*size+j] = ran;
// m[j*size+i] = ran;
}
}
*mp = m;
return RET_SUCCESS;
}
// create dense vector
func_ret_t create_vector(float **vp, int size){
float *m;
int i,j;
std::random_device dev;
std::mt19937 rng(dev());
std::uniform_real_distribution<float> dist_uniform(0,1);
float lamda = -0.001;
float coe[2*size-1];
float coe_i =0.0;
for (i=0; i < size; i++)
{
coe_i = 10*exp(lamda*i);
j=size-1+i;
coe[j]=coe_i;
j=size-1-i;
coe[j]=coe_i;
}
m = (float*) malloc(sizeof(float)*size);
if ( m == NULL) {
return RET_FAILURE;
}
for (i=0; i < size; i++) {
m[i]=coe[size-1-i];
// float ran = dist_uniform(rng);
// m[i] = ran;
}
*vp = m;
return RET_SUCCESS;
}
//create sparse random matrix
func_ret_t create_sparse_matrix(float **mp, int size){
float *m;
int i,j;
float lamda = -0.001;
float coe[2*size-1];
float coe_i =0.0;
for (i=0; i < size; i++)
{
coe_i = 10*exp(lamda*i);
j=size-1+i;
coe[j]=coe_i;
j=size-1-i;
coe[j]=coe_i;
}
m = (float*) malloc(sizeof(float)*size*size);
if ( m == NULL) {
return RET_FAILURE;
}
time_t t;
srand((unsigned) time(&t));
for (i=0; i < size; i++) {
for (j=i; j < size; j++) {
int a = 100;
if (rand()%a == 0)
{
m[i*size+j] = rand()%128;
m[j*size+i] = rand()%128;
}
else
{
m[i*size+j] = 0;
m[j*size+i] = 0;
}
}
}
*mp = m;
return RET_SUCCESS;
}