广义上,遥感指的是"遥远的感知",即在不直接接触的情况下,对目标或自然现象进行远距离探测和感知。狭义上的遥感一般指电磁波遥感技术,即在某种平台(如飞机或卫星)上利用传感器探测电磁波的反射特性、并从中提取信息的过程。这个过程获取的影像数据被称作遥感影像,一般包括卫星和航空影像。遥感数据的用途广泛,在诸如空间分析等GIS任务中、或是包括场景分类、影像分割与目标检测在内的计算机视觉(Computer Vision, CV)领域都可以见到它们的身影。
相比航空影像,卫星影像的覆盖面积更广,因此得到了更加长足的应用。常见的卫星影像可能由商业卫星摄制,也可能来自NASA、ESA等机构的开放数据库。
遥感技术具有宏观性、多波段性、周期性和经济性的特点。其中,宏观性指的是遥感平台越高,视角就越广,可以同步探测到的地面范围就越广;多波段性指的是传感器可以从紫外、可见光、近红外到微波等各个不同波段进行探测和记录信息;周期性指的是遥感卫星具有以一定周期重复获取图像的特点,可以在短时间内对同一地区进行重复观测;经济性指的是遥感技术可以作为一种获取大面积地表信息的方式,而相对不需要花费太多人力物力。
遥感技术的特点决定了遥感影像具有如下特性:
- 大尺度。一幅遥感影像能够覆盖广大的地表面积。
- 多光谱。相比自然图像,遥感影像往往具有较多的波段数。
- 来源丰富。不同传感器、不同卫星可以提供多样的数据源。
为介绍遥感影像的成像原理,首先需要引入栅格的概念。栅格是一种基于像素的数据格式,可以有效地表示连续表面。栅格中的信息存储在网格结构中,每个信息单元或像素具有相同的大小和形状,但值不同。数码照片、正射影像和卫星影像都可以这种格式存储。
栅格格式非常适合用于查看空间和时间变化的分析,因为每个数据值都有一个基于网格的可访问位置。这使我们能够访问两个或多个不同栅格中的相同地理位置并比较它们的值。
当地球观测卫星拍摄照片时,传感器会记录不同波长电磁波在栅格像元中的DN值(Digital Number)。通过DN值,可以反求地物的辐照率和反射率。它们之间的关系如以下公式所示,其中$gain$和$bias$分别指传感器的增益和偏移;$L$是辐射率,也称为辐射亮度值;$\rho$是地物反射率;$d_{s}$、$E_{0}$和$\theta$分别表示日地天文单位距离、太阳辐照度以及太阳天顶角。
$$ L = gain * DN + bias \ \rho = \pi Ld^{2}{s}/(E{0}\cos{\theta}) $$
电磁波谱是人类根据电磁波的波长或频率、波数、能量等的大小顺序进行排列的成果。在电磁波谱中人眼只能感受到一个很小的波段范围,这个范围被称为可见光,波长范围在0.38-0.76μm。这是因为我们的视觉进化为在太阳发出最多光的地方最敏感,并且广泛地局限于构成我们所谓的红色、绿色和蓝色的波长。但卫星传感器可以感知范围更广的电磁频谱,这使得我们能够与借助传感器感知更多的频谱范围。
电磁波谱范围很广,使用一个传感器同时收集所有波长的信息是不切实际的。在实际中,不同的传感器优先考虑从不同波长的光谱收集信息。由传感器捕获和分类的频谱的每个部分都被归类为一个信息带。信息带的大小各不相同,可以编译成不同类型的合成影像,每幅合成影像都强调不同的物理特性。同时,大多数遥感影像都为16位的图像,与传统的8位图像不同,它能表示更精细的光谱信息。
遥感影像具有覆盖面积广、波段数多、来源丰富等特点,其分类方式也十分多样。例如,根据空间分辨率,可将遥感影像分为低分辨率遥感影像、中分辨率遥感影像、高分辨率遥感影像等;根据波段数,又可分为多光谱影像、高光谱影像、全色影像等类型。本文档旨在为不具备遥感专业背景的开发者提供快速了解的途径,因此仅介绍几种常见的遥感影像类型。
RGB影像与生活中常见的自然图像类似,其中显示的地物特征也符合人类的视觉常识(如树是绿色的、水泥是灰色的等),三个通道分别表示红、绿和蓝。下图展示了一幅RGB遥感影像:
由于当前大多数CV任务的处理流程都是基于自然图像设计的,因此RGB类型的遥感数据集在CV领域使用较多。
MSI(Multispectral Image,多光谱影像)和HSI(Hyperspectral Image,高光谱影像)通常包括数个到数百个不等的波段,二者以不同的光谱分辨率(光谱分辨率是指传感器所能记录的电磁波谱中某一特定的波长范围值,波长范围值越宽,则光谱分辨率越低)进行区分。通常光谱分辨率在波长的1/10数量级范围内称为多光谱。MSI的波段数相对HSI较少,谱带较宽,空间分辨率较高;而HSI的波段数较多,谱带较窄,光谱分辨率较高。
在实际中常常根据应用需求选取MSI/HSI的一些特定波段:例如中红外波段的透射率在60%-70%,包含地物反射及发射光谱,可以用来探测火灾等高温目标;红边波段(绿色植物在0.67-0.76μm之间反射率增高最快的点,也是一阶导数光谱在该区间内的拐点)是指示绿色植物生长状况的敏感性波段,可以有效地监测植被的生长状况,用于研究植物养分、健康状态监测、植被识别和生理生化参数等信息等。
下面以天宫一号高光谱成像仪拍摄的北京大兴机场为例,简单介绍一下MSI/HSI处理中常见的波段组合、光谱曲线和波段选择的概念。天宫一号高光谱数据集根据波段信噪比和信息熵评价结果剔除信噪比和信息熵较低的波段,并结合影像实际目视结果剔除部分波段,共保留可见近红外谱段54个、短波红外谱段52个以及全色谱段数据。
波段组合
波段组合是指在MSI/HSI中选择三个波段数据进行组合、代替RGB三个通道所得到的结果,称为彩色图(使用真实的RGB三波段合成的结果称为真彩色图,否则称为假彩色图)。不同波段的组合能够突出不同的地物特征,下图展示了几种不同组合的目视效果:
光谱曲线解读
光谱信息往往能够反映地物特征,不同的波段反映的地物特征也不尽相同。以电磁波的波长或频率为横轴,反射率为纵轴,可以绘制光谱曲线。以植被的光谱曲线为例,如下图所示,植被在0.8μm波段反射率大于40%,相比在0.6μm波段10%左右的反射率明显更大,因此在成像时反射回更多的辐射能量。体现在图中,植被部分在0.8μm的影像中看起来更加明亮。
波段选择
MSI/HSI包含的波段数量可能较多。一方面,并不是所有波段都适用于待处理的任务;另一方面,过多的波段数可能带来沉重的资源负担。在实际应用中,可以根据需求选用MSI/HSI的部分波段完成任务,也可以使用如PCA、小波变换等方法对MSI/HSI进行降维处理,以减少冗余,节省计算资源。
SAR(Synthetic Aperture Radar)指的是主动式侧视雷达系统。SAR的成像几何属于斜距投影类型,因此SAR影像与光学影像在成像机理、几何特征、辐射特征等方面都有较大的区别。
光学影像中不同波段的信息来自于不同波长电磁波的反射能量,而SAR影像则以二进制复数形式记录了不同极化(即电磁波发射和接收的振动方向)的回波信息。基于记录的复数数据,可将原始的SAR影像通过变换提取相应的振幅和相位信息。人类无法直接分辨相位信息,但可以直观地感知振幅信息,利用振幅信息可以得到强度图像,如下图所示:
由于SAR影像的特殊成像机理,其分辨率相对较低,信噪比也较低,所以SAR影像中所包含的振幅信息远达不到光学影像的成像水平。这也是为什么SAR影像在CV领域中的应用较少。目前,SAR影像被主要用于基于相位信息的沉降检测反演、三维重建等。值得一提的是,由于SAR的波长较长,具有一定的云层和地表穿透能力,因此在部分应用场景中有其独特的优势。
RGBD影像与RGB影像的区别在于多了一个D通道,即深度(depth)。深度影像类似于灰度图像,只是其中的每个像素值代表的是传感器距离物体的实际距离。通常RGBD影像中的RGB数据和深度数据是相互配准的。深度影像提供了RGB影像所不具有的高度信息,能够在某些下游任务中对一些光谱特征相似的地物起到一定的区分作用。
相比自然图像,遥感影像的预处理过程十分繁琐。具体而言,主要可分为以下步骤:
- 辐射定标:将DN值转化为辐射亮度值或者反射率等物理量。
- 大气校正:消除由大气影响所造成的辐射误差,反演地物真实的表面反射率。该步骤与辐射定标合称为辐射校正。
- 正射校正:对影像同时进行倾斜改正和投影差改正,将影像重采样为正射影像。
- 影像配准:将不同时间、不同传感器(成像设备)或不同条件下(天候、照度、摄像位置和角度等)获取的两幅或多幅影像进行匹配、叠加。
- 影像融合:将多源信道所采集到的关于同一目标的影像数据综合成高质量影像。
- 影像裁剪:将大幅遥感影像裁剪为小块,提取感兴趣区域。
- 定义投影:对数据定义投影信息(地理坐标系)。
需要说明的是,在实际应用中,上述的步骤并不都是必须的,可根据需要选择性地执行其中某些步骤。