-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathinorder_predecessor_successor.c
250 lines (227 loc) · 5.27 KB
/
inorder_predecessor_successor.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
/*Inorder successor of a node is the next node in inorder traversal of the BST.
There is no inorder successor of the last node in inorder traversal of the BST.
Inorder predecessor of a node is the previous node in inorder traversal of the BST.
There is no inorder predecessor of the first node in inorder traversal of the BST.
*/
#include <stdio.h>
#include <stdlib.h>
struct tree
{
struct tree * lptr;
int data;
struct tree * rptr;
};
//Insert function of BST
void insert(struct tree **b, int n)
{
if (*b == NULL)
{
struct tree *new = (struct tree *) malloc(sizeof(struct tree));
new->data = n;
new->lptr = new->rptr = NULL;
*b = new;
}
else
{
if ((*b)->data > n)
insert(&((*b)->lptr), n);
else
insert(&((*b)->rptr), n);
}
}
//Inorder display function using recursion
void inorder(struct tree *b)
{
if (b != NULL)
{
inorder(b->lptr);
printf("%d ", b->data);
inorder(b->rptr);
}
}
//Function to find inorder predecessor of a node
int in_pre(struct tree *b, int node)
{
struct tree *x = b, *xpre;
int pre, flag = 0;
while (x != NULL && x->data != node)
{
if (x->data > node)
x = x->lptr;
else
{
flag = 1;
pre = x->data;
x = x->rptr;
}
}
if (x == NULL)
{
printf("Node not present in tree\n");
return 0;
}
if (x->lptr != NULL)
{
xpre = x->lptr;
while (xpre->rptr != NULL)
{
xpre = xpre->rptr;
}
printf("Predecessor of %d is %d\n", node, xpre->data);
return 0;
}
else if (flag == 1)
printf("Predecessor of %d is %d\n", node, pre);
else
printf("Predecessor of %d does not exist\n", node);
}
//Function to find inorder successor of a node
int in_succ(struct tree *b, int node)
{
struct tree *x = b;
int xsucc, f = 0;
while (x != NULL && x->data != node)
{
if (x->data > node)
{
f = 1;
xsucc = x->data;
x = x->lptr;
}
else
x = x->rptr;
}
if (x == NULL)
{
printf("Node not present in tree\n");
return 0;
}
if (x->rptr != NULL)
{
x = x->rptr;
while (x->lptr != NULL)
x = x->lptr;
printf("Successor of %d is %d\n", node, x->data);
return 0;
}
else if (f == 1)
printf("Successor of %d is %d\n", node, xsucc);
else
printf("Successor of %d does not exist\n", node);
}
int main()
{
struct tree *root = NULL;
char c;
int ch, n;
do {
printf("\nMenu:\n1.Insert\t\t\t\t2.Inorder display\n3.Inorder Predecessor of a node\t\t4.Inorder Successor of a node\n");
printf("Enter your choice: ");
scanf("%d", &ch);
switch (ch)
{
case 1:
{
printf("Enter data: ");
scanf("%d", &n);
insert(&root, n);
break;
}
case 2:
{
if (root == NULL)
printf("Tree is empty\n");
else
{
printf("In-order Display: ");
inorder(root);
printf("\n");
}
break;
}
case 3:
{
if (root == NULL)
printf("Tree is empty\n");
else
{
printf("Enter the node for which you want inorder predecessor: ");
scanf("%d", &n);
in_pre(root, n);
}
break;
}
case 4:
{
if (root == NULL)
printf("Tree is empty\n");
else
{
printf("Enter the node for which you want inorder successor: ");
scanf("%d", &n);
in_succ(root, n);
}
break;
}
default:
printf("Not a choice\n");
break;
}
printf("Do you want to continue:(Y/y) ");
scanf(" %c", &c);
} while (c == 'Y' || c == 'y');
return 0;
}
/*
Time Complexity:
Insertion - O(n)
Inorder display - O(n)
Inorder predecessor function - O(n)
Inorder successor function - O(n)
Space Complexity: O(n)
Sample Output:
Menu:
1.Insert 2.Inorder display
3.Inorder Predecessor of a node 4.Inorder Successor of a node
Enter your choice: 1
Enter data: 3
Do you want to continue:(Y/y) y
Menu:
1.Insert 2.Inorder display
3.Inorder Predecessor of a node 4.Inorder Successor of a node
Enter your choice: 1
Enter data: 5
Do you want to continue:(Y/y) y
Menu:
1.Insert 2.Inorder display
3.Inorder Predecessor of a node 4.Inorder Successor of a node
Enter your choice: 1
Enter data: 9
Do you want to continue:(Y/y) y
Menu:
1.Insert 2.Inorder display
3.Inorder Predecessor of a node 4.Inorder Successor of a node
Enter your choice: 1
Enter data: 14
Do you want to continue:(Y/y) y
Menu:
1.Insert 2.Inorder display
3.Inorder Predecessor of a node 4.Inorder Successor of a node
Enter your choice: 2
In-order Display: 3 5 9 14
Do you want to continue:(Y/y) y
Menu:
1.Insert 2.Inorder display
3.Inorder Predecessor of a node 4.Inorder Successor of a node
Enter your choice: 3
Enter the node for which you want inorder predecessor: 5
Predecessor of 5 is 3
Do you want to continue:(Y/y) y
Menu:
1.Insert 2.Inorder display
3.Inorder Predecessor of a node 4.Inorder Successor of a node
Enter your choice: 4
Enter the node for which you want inorder successor: 9
Successor of 9 is 14
Do you want to continue:(Y/y) n
*/