-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathphotometric_fitting.py
265 lines (225 loc) · 12 KB
/
photometric_fitting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import os, sys
import cv2
import torch
import torchvision
import torch.nn.functional as F
import torch.nn as nn
import numpy as np
from glob import glob
import time
import datetime
import imageio
sys.path.append('./models/')
from FLAME import FLAME, FLAMETex
from renderer import Renderer
import util
torch.backends.cudnn.benchmark = True
class PhotometricFitting(object):
def __init__(self, config, device='cuda'):
self.batch_size = config.batch_size
self.image_size = config.image_size
self.config = config
self.device = device
#
self.flame = FLAME(self.config).to(self.device)
self.flametex = FLAMETex(self.config).to(self.device)
self._setup_renderer()
def _setup_renderer(self):
mesh_file = './data/head_template_mesh.obj'
self.render = Renderer(self.image_size, obj_filename=mesh_file).to(self.device)
def optimize(self, images, landmarks, image_masks, savefolder=None):
bz = images.shape[0]
shape = nn.Parameter(torch.zeros(bz, self.config.shape_params).float().to(self.device))
tex = nn.Parameter(torch.zeros(bz, self.config.tex_params).float().to(self.device))
exp = nn.Parameter(torch.zeros(bz, self.config.expression_params).float().to(self.device))
pose = nn.Parameter(torch.zeros(bz, self.config.pose_params).float().to(self.device))
cam = torch.zeros(bz, self.config.camera_params); cam[:, 0] = 5.
cam = nn.Parameter(cam.float().to(self.device))
lights = nn.Parameter(torch.zeros(bz, 9, 3).float().to(self.device))
e_opt = torch.optim.Adam(
[shape, exp, pose, cam, tex, lights],
lr=self.config.e_lr,
weight_decay=self.config.e_wd
)
e_opt_rigid = torch.optim.Adam(
[pose, cam],
lr=self.config.e_lr,
weight_decay=self.config.e_wd
)
gt_landmark = landmarks
# rigid fitting of pose and camera with 51 static face landmarks,
# this is due to the non-differentiable attribute of contour landmarks trajectory
for k in range(200):
losses = {}
vertices, landmarks2d, landmarks3d = self.flame(shape_params=shape, expression_params=exp, pose_params=pose)
trans_vertices = util.batch_orth_proj(vertices, cam);
trans_vertices[..., 1:] = - trans_vertices[..., 1:]
landmarks2d = util.batch_orth_proj(landmarks2d, cam);
landmarks2d[..., 1:] = - landmarks2d[..., 1:]
landmarks3d = util.batch_orth_proj(landmarks3d, cam);
landmarks3d[..., 1:] = - landmarks3d[..., 1:]
losses['landmark'] = util.l2_distance(landmarks2d[:, 17:, :2], gt_landmark[:, 17:, :2]) * config.w_lmks
all_loss = 0.
for key in losses.keys():
all_loss = all_loss + losses[key]
losses['all_loss'] = all_loss
e_opt_rigid.zero_grad()
all_loss.backward()
e_opt_rigid.step()
loss_info = '----iter: {}, time: {}\n'.format(k, datetime.datetime.now().strftime('%Y-%m-%d-%H:%M:%S'))
for key in losses.keys():
loss_info = loss_info + '{}: {}, '.format(key, float(losses[key]))
if k % 10 == 0:
print(loss_info)
if k % 10 == 0:
grids = {}
visind = range(bz) # [0]
grids['images'] = torchvision.utils.make_grid(images[visind]).detach().cpu()
grids['landmarks_gt'] = torchvision.utils.make_grid(
util.tensor_vis_landmarks(images[visind], landmarks[visind]))
grids['landmarks2d'] = torchvision.utils.make_grid(
util.tensor_vis_landmarks(images[visind], landmarks2d[visind]))
grids['landmarks3d'] = torchvision.utils.make_grid(
util.tensor_vis_landmarks(images[visind], landmarks3d[visind]))
grid = torch.cat(list(grids.values()), 1)
grid_image = (grid.numpy().transpose(1, 2, 0).copy() * 255)[:, :, [2, 1, 0]]
grid_image = np.minimum(np.maximum(grid_image, 0), 255).astype(np.uint8)
cv2.imwrite('{}/{}.jpg'.format(savefolder, k), grid_image)
# non-rigid fitting of all the parameters with 68 face landmarks, photometric loss and regularization terms.
for k in range(200, 1000):
losses = {}
vertices, landmarks2d, landmarks3d = self.flame(shape_params=shape, expression_params=exp, pose_params=pose)
trans_vertices = util.batch_orth_proj(vertices, cam);
trans_vertices[..., 1:] = - trans_vertices[..., 1:]
landmarks2d = util.batch_orth_proj(landmarks2d, cam);
landmarks2d[..., 1:] = - landmarks2d[..., 1:]
landmarks3d = util.batch_orth_proj(landmarks3d, cam);
landmarks3d[..., 1:] = - landmarks3d[..., 1:]
losses['landmark'] = util.l2_distance(landmarks2d[:, :, :2], gt_landmark[:, :, :2]) * config.w_lmks
losses['shape_reg'] = (torch.sum(shape ** 2) / 2) * config.w_shape_reg # *1e-4
losses['expression_reg'] = (torch.sum(exp ** 2) / 2) * config.w_expr_reg # *1e-4
losses['pose_reg'] = (torch.sum(pose ** 2) / 2) * config.w_pose_reg
## render
albedos = self.flametex(tex) / 255.
ops = self.render(vertices, trans_vertices, albedos, lights)
predicted_images = ops['images']
losses['photometric_texture'] = (image_masks * (ops['images'] - images).abs()).mean() * config.w_pho
all_loss = 0.
for key in losses.keys():
all_loss = all_loss + losses[key]
losses['all_loss'] = all_loss
e_opt.zero_grad()
all_loss.backward()
e_opt.step()
loss_info = '----iter: {}, time: {}\n'.format(k, datetime.datetime.now().strftime('%Y-%m-%d-%H:%M:%S'))
for key in losses.keys():
loss_info = loss_info + '{}: {}, '.format(key, float(losses[key]))
if k % 10 == 0:
print(loss_info)
# visualize
if k % 10 == 0:
grids = {}
visind = range(bz) # [0]
grids['images'] = torchvision.utils.make_grid(images[visind]).detach().cpu()
grids['landmarks_gt'] = torchvision.utils.make_grid(
util.tensor_vis_landmarks(images[visind], landmarks[visind]))
grids['landmarks2d'] = torchvision.utils.make_grid(
util.tensor_vis_landmarks(images[visind], landmarks2d[visind]))
grids['landmarks3d'] = torchvision.utils.make_grid(
util.tensor_vis_landmarks(images[visind], landmarks3d[visind]))
grids['albedoimage'] = torchvision.utils.make_grid(
(ops['albedo_images'])[visind].detach().cpu())
grids['render'] = torchvision.utils.make_grid(predicted_images[visind].detach().float().cpu())
shape_images = self.render.render_shape(vertices, trans_vertices, images)
grids['shape'] = torchvision.utils.make_grid(
F.interpolate(shape_images[visind], [224, 224])).detach().float().cpu()
# grids['tex'] = torchvision.utils.make_grid(F.interpolate(albedos[visind], [224, 224])).detach().cpu()
grid = torch.cat(list(grids.values()), 1)
grid_image = (grid.numpy().transpose(1, 2, 0).copy() * 255)[:, :, [2, 1, 0]]
grid_image = np.minimum(np.maximum(grid_image, 0), 255).astype(np.uint8)
cv2.imwrite('{}/{}.jpg'.format(savefolder, k), grid_image)
single_params = {
'shape': shape.detach().cpu().numpy(),
'exp': exp.detach().cpu().numpy(),
'pose': pose.detach().cpu().numpy(),
'cam': cam.detach().cpu().numpy(),
'verts': trans_vertices.detach().cpu().numpy(),
'albedos':albedos.detach().cpu().numpy(),
'tex': tex.detach().cpu().numpy(),
'lit': lights.detach().cpu().numpy()
}
return single_params
def run(self, imagepath, landmarkpath):
# The implementation is potentially able to optimize with images(batch_size>1),
# here we show the example with a single image fitting
images = []
landmarks = []
image_masks = []
image_name = os.path.basename(imagepath)[:-4]
savefile = os.path.sep.join([self.config.savefolder, image_name + '.npy'])
# photometric optimization is sensitive to the hair or glass occlusions,
# therefore we use a face segmentation network to mask the skin region out.
image_mask_folder = './FFHQ_seg/'
image_mask_path = os.path.sep.join([image_mask_folder, image_name + '.npy'])
image = cv2.resize(cv2.imread(imagepath), (config.cropped_size, config.cropped_size)).astype(np.float32) / 255.
image = image[:, :, [2, 1, 0]].transpose(2, 0, 1)
images.append(torch.from_numpy(image[None, :, :, :]).to(self.device))
image_mask = np.load(image_mask_path, allow_pickle=True)
image_mask = image_mask[..., None].astype('float32')
image_mask = image_mask.transpose(2, 0, 1)
image_mask_bn = np.zeros_like(image_mask)
image_mask_bn[np.where(image_mask != 0)] = 1.
image_masks.append(torch.from_numpy(image_mask_bn[None, :, :, :]).to(self.device))
landmark = np.load(landmarkpath).astype(np.float32)
landmark[:, 0] = landmark[:, 0] / float(image.shape[2]) * 2 - 1
landmark[:, 1] = landmark[:, 1] / float(image.shape[1]) * 2 - 1
landmarks.append(torch.from_numpy(landmark)[None, :, :].float().to(self.device))
images = torch.cat(images, dim=0)
images = F.interpolate(images, [self.image_size, self.image_size])
image_masks = torch.cat(image_masks, dim=0)
image_masks = F.interpolate(image_masks, [self.image_size, self.image_size])
landmarks = torch.cat(landmarks, dim=0)
savefolder = os.path.sep.join([self.config.savefolder, image_name])
util.check_mkdir(savefolder)
# optimize
single_params = self.optimize(images, landmarks, image_masks, savefolder)
self.render.save_obj(filename=savefile[:-4]+'.obj',
vertices=torch.from_numpy(single_params['verts'][0]).to(self.device),
textures=torch.from_numpy(single_params['albedos'][0]).to(self.device)
)
np.save(savefile, single_params)
if __name__ == '__main__':
image_name = str(sys.argv[1])
device_name = str(sys.argv[2])
config = {
# FLAME
'flame_model_path': './data/generic_model.pkl', # acquire it from FLAME project page
'flame_lmk_embedding_path': './data/landmark_embedding.npy',
'tex_space_path': './data/FLAME_texture.npz', # acquire it from FLAME project page
'camera_params': 3,
'shape_params': 100,
'expression_params': 50,
'pose_params': 6,
'tex_params': 50,
'use_face_contour': True,
'cropped_size': 256,
'batch_size': 1,
'image_size': 224,
'e_lr': 0.005,
'e_wd': 0.0001,
'savefolder': './test_results/',
# weights of losses and reg terms
'w_pho': 8,
'w_lmks': 1,
'w_shape_reg': 1e-4,
'w_expr_reg': 1e-4,
'w_pose_reg': 0,
}
config = util.dict2obj(config)
util.check_mkdir(config.savefolder)
config.batch_size = 1
fitting = PhotometricFitting(config, device=device_name)
input_folder = './FFHQ'
imagepath = os.path.sep.join([input_folder, image_name + '.png'])
landmarkpath = os.path.sep.join([input_folder, image_name + '.npy'])
fitting.run(imagepath, landmarkpath)