-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwav_to_mel.py
92 lines (74 loc) · 3.07 KB
/
wav_to_mel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from scipy.io.wavfile import read
import torchaudio
import torch
from librosa.util import normalize
from librosa.filters import mel as librosa_mel_fn
import numpy as np
import librosa
import librosa.display
import soundfile as sf
import os
from tqdm import tqdm
import sys
MAX_WAV_VALUE = 32768.0
def load_wav(full_path):
sampling_rate, data = read(full_path)
return data, sampling_rate
def dynamic_range_compression(x, C=1, clip_val=1e-5):
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
def dynamic_range_decompression(x, C=1):
return np.exp(x) / C
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
return torch.log(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression_torch(x, C=1):
return torch.exp(x) / C
def spectral_normalize_torch(magnitudes):
output = dynamic_range_compression_torch(magnitudes)
return output
def spectral_de_normalize_torch(magnitudes):
output = dynamic_range_decompression_torch(magnitudes)
return output
mel_basis = {}
hann_window = {}
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
if torch.min(y) < -1.:
print('min value is ', torch.min(y))
if torch.max(y) > 1.:
print('max value is ', torch.max(y))
global mel_basis, hann_window
if fmax not in mel_basis:
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device)
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
y = y.squeeze(1)
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)],
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9))
spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec)
spec = spectral_normalize_torch(spec)
return spec
SUBSET = "vggsound"
wav_path = "/blob/v-yuancwang/DiffAudioImg/VGGSound/data/{}/wav".format(SUBSET)
mel_path = "/blob/v-yuancwang/DiffAudioImg/VGGSound/data/{}/mel".format(SUBSET)
wav_list = os.listdir(wav_path)
mel_set = set(os.listdir(mel_path))
wav_list.sort()
for wav_file in tqdm(wav_list):
if wav_file.replace(".wav", ".npy") in mel_set:
continue
wav_file_path = os.path.join(wav_path, wav_file)
wav, sr = librosa.load(wav_file_path, sr=16000)
# print(len(wav), sr)
# print(wav.shape)
if len(wav) < 16000:
continue
wav = torch.FloatTensor(wav)
# print(wav.unsqueeze(0).shape)
x = mel_spectrogram(wav.unsqueeze(0), n_fft=1024, num_mels=80, sampling_rate=16000,
hop_size=256, win_size=1024, fmin=0, fmax=8000)
# print(x.shape, x.max(), x.min())
# print(x)
spec = x.cpu().numpy()[0]
# print(spec.shape)
np.save(os.path.join(mel_path, wav_file.replace(".wav", ".npy")), spec)