forked from Zheng-Chong/CatVTON
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
158 lines (136 loc) · 5.46 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import torch
from cleanfid import fid as FID
from PIL import Image
from torch.utils.data import Dataset
from torchmetrics.image import StructuralSimilarityIndexMeasure
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
from torchvision import transforms
from tqdm import tqdm
from utils import scan_files_in_dir
from prettytable import PrettyTable
class EvalDataset(Dataset):
def __init__(self, gt_folder, pred_folder, height=1024):
self.gt_folder = gt_folder
self.pred_folder = pred_folder
self.height = height
self.data = self.prepare_data()
self.to_tensor = transforms.ToTensor()
def extract_id_from_filename(self, filename):
# find first number in filename
start_i = None
for i, c in enumerate(filename):
if c.isdigit():
start_i = i
break
if start_i is None:
assert False, f"Cannot find number in filename {filename}"
return filename[start_i:start_i+8]
def prepare_data(self):
gt_files = scan_files_in_dir(self.gt_folder, postfix={'.jpg', '.png'})
gt_dict = {self.extract_id_from_filename(file.name): file for file in gt_files}
pred_files = scan_files_in_dir(self.pred_folder, postfix={'.jpg', '.png'})
tuples = []
for pred_file in pred_files:
pred_id = self.extract_id_from_filename(pred_file.name)
if pred_id not in gt_dict:
print(f"Cannot find gt file for {pred_file}")
else:
tuples.append((gt_dict[pred_id].path, pred_file.path))
return tuples
def resize(self, img):
w, h = img.size
new_w = int(w * self.height / h)
return img.resize((new_w, self.height), Image.LANCZOS)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
gt_path, pred_path = self.data[idx]
gt, pred = self.resize(Image.open(gt_path)), self.resize(Image.open(pred_path))
if gt.height != self.height:
gt = self.resize(gt)
if pred.height != self.height:
pred = self.resize(pred)
gt = self.to_tensor(gt)
pred = self.to_tensor(pred)
return gt, pred
def copy_resize_gt(gt_folder, height):
new_folder = f"{gt_folder}_{height}"
if not os.path.exists(new_folder):
os.makedirs(new_folder, exist_ok=True)
for file in tqdm(os.listdir(gt_folder)):
if os.path.exists(os.path.join(new_folder, file)):
continue
img = Image.open(os.path.join(gt_folder, file))
w, h = img.size
new_w = int(w * height / h)
img = img.resize((new_w, height), Image.LANCZOS)
img.save(os.path.join(new_folder, file))
return new_folder
@torch.no_grad()
def ssim(dataloader):
ssim_score = 0
ssim = StructuralSimilarityIndexMeasure(data_range=1.0).to("cuda")
for gt, pred in tqdm(dataloader, desc="Calculating SSIM"):
batch_size = gt.size(0)
gt, pred = gt.to("cuda"), pred.to("cuda")
ssim_score += ssim(pred, gt) * batch_size
return ssim_score / len(dataloader.dataset)
@torch.no_grad()
def lpips(dataloader):
lpips_score = LearnedPerceptualImagePatchSimilarity(net_type='squeeze').to("cuda")
score = 0
for gt, pred in tqdm(dataloader, desc="Calculating LPIPS"):
batch_size = gt.size(0)
pred = pred.to("cuda")
gt = gt.to("cuda")
# LPIPS needs the images to be in the [-1, 1] range.
gt = (gt * 2) - 1
pred = (pred * 2) - 1
score += lpips_score(gt, pred) * batch_size
return score / len(dataloader.dataset)
def eval(args):
# Check gt_folder has images with target height, resize if not
pred_sample = os.listdir(args.pred_folder)[0]
gt_sample = os.listdir(args.gt_folder)[0]
img = Image.open(os.path.join(args.pred_folder, pred_sample))
gt_img = Image.open(os.path.join(args.gt_folder, gt_sample))
if img.height != gt_img.height:
title = "--"*30 + "Resizing GT Images to height {img.height}" + "--"*30
print(title)
args.gt_folder = copy_resize_gt(args.gt_folder, img.height)
print("-"*len(title))
# Form dataset
dataset = EvalDataset(args.gt_folder, args.pred_folder, img.height)
dataloader = torch.utils.data.DataLoader(
dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=False, drop_last=False
)
# Calculate Metrics
header = []
row = []
header = ["FID", "KID"]
fid_ = FID.compute_fid(args.gt_folder, args.pred_folder)
kid_ = FID.compute_kid(args.gt_folder, args.pred_folder) * 1000
row = [fid_, kid_]
if args.paired:
header += ["SSIM", "LPIPS"]
ssim_ = ssim(dataloader).item()
lpips_ = lpips(dataloader).item()
row += [ssim_, lpips_]
# Print Results
print("GT Folder : ", args.gt_folder)
print("Pred Folder: ", args.pred_folder)
table = PrettyTable()
table.field_names = header
table.add_row(row)
print(table)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--gt_folder", type=str, required=True)
parser.add_argument("--pred_folder", type=str, required=True)
parser.add_argument("--paired", action="store_true")
parser.add_argument("--batch_size", type=int, default=16)
parser.add_argument("--num_workers", type=int, default=4)
args = parser.parse_args()
eval(args)