forked from huggingface/diffusers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
387 lines (360 loc) · 15.2 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import os
import numpy as np
import torch
import argparse
from torch.utils.data import Dataset, DataLoader
from src.diffusers.schedulers.scheduling_ddim import DDIMScheduler
from src.diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from src.diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from src.diffusers.image_processor import VaeImageProcessor
from src.diffusers import ControlNetModel
from src.diffusers.pipelines.controlnet.pipeline_controlnet import StableDiffusionControlNetPipelineModified
from tqdm import tqdm
from PIL import Image, ImageFilter
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
class InferenceDataset(Dataset):
def __init__(self, args):
self.args = args
self.vae_processor = VaeImageProcessor(vae_scale_factor=8)
self.mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
self.data = self.load_data()
def load_data(self):
return []
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
data = self.data[idx]
person, cloth, mask = [Image.open(data[key]) for key in ['person', 'cloth', 'mask']]
return {
'index': idx,
'person_name': data['person_name'],
'person': self.vae_processor.preprocess(person, self.args.height, self.args.width)[0],
'cloth': self.vae_processor.preprocess(cloth, self.args.height, self.args.width)[0],
'mask': self.mask_processor.preprocess(mask, self.args.height, self.args.width)[0]
}
class VITONHDTestDataset(InferenceDataset):
def load_data(self):
assert os.path.exists(pair_txt:=os.path.join(self.args.data_root_path, 'test_pairs_unpaired.txt')), f"File {pair_txt} does not exist."
with open(pair_txt, 'r') as f:
lines = f.readlines()
self.args.data_root_path = os.path.join(self.args.data_root_path, "test")
output_dir = os.path.join(self.args.output_dir, "vitonhd", 'unpaired' if not self.args.eval_pair else 'paired')
data = []
for line in lines:
person_img, cloth_img = line.strip().split(" ")
if os.path.exists(os.path.join(output_dir, person_img)):
continue
if self.args.eval_pair:
cloth_img = person_img
data.append({
'person_name': person_img,
'person': os.path.join(self.args.data_root_path, 'image', person_img),
'cloth': os.path.join(self.args.data_root_path, 'cloth', cloth_img),
'mask': os.path.join(self.args.data_root_path, 'agnostic-mask', person_img.replace('.jpg', '_mask.png')),
})
return data
class DressCodeTestDataset(InferenceDataset):
def load_data(self):
data = []
for sub_folder in ['upper_body', 'lower_body', 'dresses']:
assert os.path.exists(os.path.join(self.args.data_root_path, sub_folder)), f"Folder {sub_folder} does not exist."
pair_txt = os.path.join(self.args.data_root_path, sub_folder, 'test_pairs_paired.txt' if self.args.eval_pair else 'test_pairs_unpaired.txt')
assert os.path.exists(pair_txt), f"File {pair_txt} does not exist."
with open(pair_txt, 'r') as f:
lines = f.readlines()
output_dir = os.path.join(self.args.output_dir, f"dresscode-{self.args.height}",
'unpaired' if not self.args.eval_pair else 'paired', sub_folder)
for line in lines:
person_img, cloth_img = line.strip().split(" ")
if os.path.exists(os.path.join(output_dir, person_img)):
continue
data.append({
'person_name': os.path.join(sub_folder, person_img),
'person': os.path.join(self.args.data_root_path, sub_folder, 'images', person_img),
'cloth': os.path.join(self.args.data_root_path, sub_folder, 'images', cloth_img),
'mask': os.path.join(self.args.data_root_path, sub_folder, 'agnostic_masks', person_img.replace('.jpg', '.png'))
})
return data
# Based on the code for VITONHDTestDataset
class CustomDataset(InferenceDataset):
def load_data(self):
assert os.path.exists(pair_txt:=os.path.join(self.args.data_root_path, 'test_pairs_unpaired.txt')), f"File {pair_txt} does not exist."
with open(pair_txt, 'r') as f:
lines = f.readlines()
self.args.data_root_path = os.path.join(self.args.data_root_path, "test")
output_dir = os.path.join(self.args.output_dir, "custom", 'unpaired' if not self.args.eval_pair else 'paired')
data = []
for line in lines:
person_img, cloth_img = line.strip().split(" ")
if os.path.exists(os.path.join(output_dir, person_img)):
continue
if self.args.eval_pair:
cloth_img = person_img
data.append({
'person_name': person_img,
'person': os.path.join(self.args.data_root_path, 'image', person_img),
'cloth': os.path.join(self.args.data_root_path, 'cloth', cloth_img),
'mask': os.path.join(self.args.data_root_path, 'agnostic-mask', person_img.replace('.jpg', '_mask.png')),
})
return data
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--base_model_path",
type=str,
default="booksforcharlie/stable-diffusion-inpainting", # Change to a copy repo as runawayml delete original repo
help=(
"The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub."
),
)
parser.add_argument(
"--resume_path",
type=str,
default="zhengchong/CatVTON",
help=(
"The Path to the checkpoint of trained tryon model."
),
)
parser.add_argument(
"--dataset_name",
type=str,
required=True,
help="The datasets to use for evaluation.",
)
parser.add_argument(
"--data_root_path",
type=str,
required=True,
help="Path to the dataset to evaluate."
)
parser.add_argument(
"--output_dir",
type=str,
default="output",
help="The output directory where the model predictions will be written.",
)
parser.add_argument(
"--seed", type=int, default=555, help="A seed for reproducible evaluation."
)
parser.add_argument(
"--batch_size", type=int, default=8, help="The batch size for evaluation."
)
parser.add_argument(
"--num_inference_steps",
type=int,
default=50,
help="Number of inference steps to perform.",
)
parser.add_argument(
"--guidance_scale",
type=float,
default=2.5,
help="The scale of classifier-free guidance for inference.",
)
parser.add_argument(
"--width",
type=int,
default=384,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--height",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--repaint",
action="store_true",
help="Whether to repaint the result image with the original background."
)
parser.add_argument(
"--eval_pair",
action="store_true",
help="Whether or not to evaluate the pair.",
)
parser.add_argument(
"--concat_eval_results",
action="store_true",
help="Whether or not to concatenate the all conditions into one image.",
)
parser.add_argument(
"--allow_tf32",
action="store_true",
default=True,
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=8,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="bf16",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--concat_axis",
type=str,
choices=["x", "y", 'random'],
default="y",
help="The axis to concat the cloth feature, select from ['x', 'y', 'random'].",
)
parser.add_argument(
"--enable_condition_noise",
action="store_true",
default=True,
help="Whether or not to enable condition noise.",
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
def repaint(person, mask, result):
_, h = result.size
kernal_size = h // 50
if kernal_size % 2 == 0:
kernal_size += 1
mask = mask.filter(ImageFilter.GaussianBlur(kernal_size))
person_np = np.array(person)
result_np = np.array(result)
mask_np = np.array(mask) / 255
repaint_result = person_np * (1 - mask_np) + result_np * mask_np
repaint_result = Image.fromarray(repaint_result.astype(np.uint8))
return repaint_result
def to_pil_image(images):
images = (images / 2 + 0.5).clamp(0, 1)
images = images.cpu().permute(0, 2, 3, 1).float().numpy()
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
else:
pil_images = [Image.fromarray(image) for image in images]
return pil_images
from src.diffusers.utils import load_image
@torch.no_grad()
def main():
args = parse_args()
url = "https://3dcoat.com/forum/uploads/monthly_2021_10/8fdbb8940e2cb30bea371fa753ff6a673c9e2d2b.png.dc08fd104dcbaa9fa1343447e37cfd2b.png"
depth_image = load_image(url)
controlnet = ControlNetModel.from_pretrained("model/ControlNets/controlnet_depth", torch_dtype=torch.float16).to(device="cuda")
# vae: AutoencoderKL,
# text_encoder: CLIPTextModel,
# tokenizer: CLIPTokenizer,
# unet: UNet2DConditionModel,
# controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
# scheduler: KarrasDiffusionSchedulers,
# safety_checker: StableDiffusionSafetyChecker,
# feature_extractor: CLIPImageProcessor,
# attn_ckpt,
# image_encoder: CLIPVisionModelWithProjection = None,
# requires_safety_checker: bool = True,
# attn_ckpt_version="mix",
# weight_dtype=torch.float32,
device="cuda"
base_ckpt = args.base_model_path
weight_dtype = torch.float16
scheduler = DDIMScheduler.from_pretrained(base_ckpt, subfolder="scheduler")
vae = AutoencoderKL.from_pretrained(base_ckpt, subfolder="vae").to(device, dtype=weight_dtype)
feature_extractor = CLIPImageProcessor.from_pretrained(base_ckpt, subfolder="feature_extractor")
unet = UNet2DConditionModel.from_pretrained(base_ckpt, subfolder="unet").to(device, dtype=weight_dtype)
text_encoder = CLIPTextModel.from_pretrained(base_ckpt, subfolder="text_encoder")
tokenizer = CLIPTokenizer.from_pretrained(base_ckpt, subfolder="tokenizer")
# Pipeline
pipeline = StableDiffusionControlNetPipelineModified(
vae,
text_encoder,
tokenizer,
unet,
scheduler,
feature_extractor,
controlnet,
None,
args.resume_path,
attn_ckpt_version=args.dataset_name,
weight_dtype=weight_dtype,
requires_safety_checker=False,
)
# Dataset
if args.dataset_name == "vitonhd":
dataset = VITONHDTestDataset(args)
elif args.dataset_name == "dresscode":
dataset = DressCodeTestDataset(args)
elif args.dataset_name == "custom":
dataset = CustomDataset(args)
else:
raise ValueError(f"Invalid dataset name {args.dataset}.")
print(f"Dataset {args.dataset_name} loaded, total {len(dataset)} pairs.")
dataloader = DataLoader(
dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.dataloader_num_workers
)
# Inference
generator = torch.Generator(device='cuda').manual_seed(args.seed)
args.output_dir = os.path.join(args.output_dir, f"{args.dataset_name}-{args.height}", "paired" if args.eval_pair else "unpaired")
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
for batch in tqdm(dataloader):
person_image = batch['person']
cloth_image = batch['cloth']
mask = batch['mask']
results = pipeline(
person_image,
cloth_image,
mask,
image=depth_image,
num_inference_steps=args.num_inference_steps,
guidance_scale=args.guidance_scale,
height=args.height,
width=args.width,
generator=generator,
)
if args.concat_eval_results or args.repaint:
person_images = to_pil_image(person_images)
cloth_images = to_pil_image(cloth_images)
masks = to_pil_image(masks)
for i, result in enumerate(results):
person_name = batch['person_name'][i]
output_path = os.path.join(args.output_dir, person_name)
if not os.path.exists(os.path.dirname(output_path)):
os.makedirs(os.path.dirname(output_path))
if args.repaint:
person_path, mask_path = dataset.data[batch['index'][i]]['person'], dataset.data[batch['index'][i]]['mask']
person_image= Image.open(person_path).resize(result.size, Image.LANCZOS)
mask = Image.open(mask_path).resize(result.size, Image.NEAREST)
result = repaint(person_image, mask, result)
if args.concat_eval_results:
w, h = result.size
concated_result = Image.new('RGB', (w*3, h))
concated_result.paste(person_images[i], (0, 0))
concated_result.paste(cloth_images[i], (w, 0))
concated_result.paste(result, (w*2, 0))
result = concated_result
result.save(output_path)
if __name__ == "__main__":
main()