.. currentmodule:: torch
A :class:`torch.Tensor` is a multi-dimensional matrix containing elements of a single data type.
Torch defines nine CPU tensor types and nine GPU tensor types:
Data type | dtype | CPU tensor | GPU tensor |
---|---|---|---|
32-bit floating point | torch.float32 or torch.float |
:class:`torch.FloatTensor` | :class:`torch.cuda.FloatTensor` |
64-bit floating point | torch.float64 or torch.double |
:class:`torch.DoubleTensor` | :class:`torch.cuda.DoubleTensor` |
16-bit floating point | torch.float16 or torch.half |
:class:`torch.HalfTensor` | :class:`torch.cuda.HalfTensor` |
8-bit integer (unsigned) | torch.uint8 |
:class:`torch.ByteTensor` | :class:`torch.cuda.ByteTensor` |
8-bit integer (signed) | torch.int8 |
:class:`torch.CharTensor` | :class:`torch.cuda.CharTensor` |
16-bit integer (signed) | torch.int16 or torch.short |
:class:`torch.ShortTensor` | :class:`torch.cuda.ShortTensor` |
32-bit integer (signed) | torch.int32 or torch.int |
:class:`torch.IntTensor` | :class:`torch.cuda.IntTensor` |
64-bit integer (signed) | torch.int64 or torch.long |
:class:`torch.LongTensor` | :class:`torch.cuda.LongTensor` |
Boolean | torch.bool |
:class:`torch.BoolTensor` | :class:`torch.cuda.BoolTensor` |
:class:`torch.Tensor` is an alias for the default tensor type (:class:`torch.FloatTensor`).
A tensor can be constructed from a Python :class:`list` or sequence using the :func:`torch.tensor` constructor:
>>> torch.tensor([[1., -1.], [1., -1.]]) tensor([[ 1.0000, -1.0000], [ 1.0000, -1.0000]]) >>> torch.tensor(np.array([[1, 2, 3], [4, 5, 6]])) tensor([[ 1, 2, 3], [ 4, 5, 6]])
Warning
:func:`torch.tensor` always copies :attr:`data`. If you have a Tensor
:attr:`data` and just want to change its requires_grad
flag, use
:meth:`~torch.Tensor.requires_grad_` or
:meth:`~torch.Tensor.detach` to avoid a copy.
If you have a numpy array and want to avoid a copy, use
:func:`torch.as_tensor`.
A tensor of specific data type can be constructed by passing a :class:`torch.dtype` and/or a :class:`torch.device` to a constructor or tensor creation op:
>>> torch.zeros([2, 4], dtype=torch.int32) tensor([[ 0, 0, 0, 0], [ 0, 0, 0, 0]], dtype=torch.int32) >>> cuda0 = torch.device('cuda:0') >>> torch.ones([2, 4], dtype=torch.float64, device=cuda0) tensor([[ 1.0000, 1.0000, 1.0000, 1.0000], [ 1.0000, 1.0000, 1.0000, 1.0000]], dtype=torch.float64, device='cuda:0')
The contents of a tensor can be accessed and modified using Python's indexing and slicing notation:
>>> x = torch.tensor([[1, 2, 3], [4, 5, 6]]) >>> print(x[1][2]) tensor(6) >>> x[0][1] = 8 >>> print(x) tensor([[ 1, 8, 3], [ 4, 5, 6]])
Use :meth:`torch.Tensor.item` to get a Python number from a tensor containing a single value:
>>> x = torch.tensor([[1]]) >>> x tensor([[ 1]]) >>> x.item() 1 >>> x = torch.tensor(2.5) >>> x tensor(2.5000) >>> x.item() 2.5
A tensor can be created with :attr:`requires_grad=True` so that :mod:`torch.autograd` records operations on them for automatic differentiation.
>>> x = torch.tensor([[1., -1.], [1., 1.]], requires_grad=True) >>> out = x.pow(2).sum() >>> out.backward() >>> x.grad tensor([[ 2.0000, -2.0000], [ 2.0000, 2.0000]])
Each tensor has an associated :class:`torch.Storage`, which holds its data. The tensor class provides multi-dimensional, strided view of a storage and defines numeric operations on it.
Note
For more information on the :class:`torch.dtype`, :class:`torch.device`, and :class:`torch.layout` attributes of a :class:`torch.Tensor`, see :ref:`tensor-attributes-doc`.
Note
Methods which mutate a tensor are marked with an underscore suffix. For example, :func:`torch.FloatTensor.abs_` computes the absolute value in-place and returns the modified tensor, while :func:`torch.FloatTensor.abs` computes the result in a new tensor.
Note
To change an existing tensor's :class:`torch.device` and/or :class:`torch.dtype`, consider using :meth:`~torch.Tensor.to` method on the tensor.
Warning
Current implementation of :class:`torch.Tensor` introduces memory overhead, thus it might lead to unexpectedly high memory usage in the applications with many tiny tensors. If this is your case, consider using one large structure.
There are a few main ways to create a tensor, depending on your use case.
- To create a tensor with pre-existing data, use :func:`torch.tensor`.
- To create a tensor with specific size, use
torch.*
tensor creation ops (see :ref:`tensor-creation-ops`). - To create a tensor with the same size (and similar types) as another tensor,
use
torch.*_like
tensor creation ops (see :ref:`tensor-creation-ops`). - To create a tensor with similar type but different size as another tensor,
use
tensor.new_*
creation ops.
.. automethod:: new_tensor
.. automethod:: new_full
.. automethod:: new_empty
.. automethod:: new_ones
.. automethod:: new_zeros
.. autoattribute:: is_cuda
.. autoattribute:: device
.. autoattribute:: grad :noindex:
.. autoattribute:: ndim
.. autoattribute:: T
.. automethod:: abs
.. automethod:: abs_
.. automethod:: acos
.. automethod:: acos_
.. automethod:: add
.. automethod:: add_
.. automethod:: addbmm
.. automethod:: addbmm_
.. automethod:: addcdiv
.. automethod:: addcdiv_
.. automethod:: addcmul
.. automethod:: addcmul_
.. automethod:: addmm
.. automethod:: addmm_
.. automethod:: addmv
.. automethod:: addmv_
.. automethod:: addr
.. automethod:: addr_
.. automethod:: allclose
.. automethod:: angle
.. automethod:: apply_
.. automethod:: argmax
.. automethod:: argmin
.. automethod:: argsort
.. automethod:: asin
.. automethod:: asin_
.. automethod:: as_strided
.. automethod:: atan
.. automethod:: atan2
.. automethod:: atan2_
.. automethod:: atan_
.. automethod:: backward :noindex:
.. automethod:: baddbmm
.. automethod:: baddbmm_
.. automethod:: bernoulli
.. automethod:: bernoulli_
.. automethod:: bfloat16
.. automethod:: bincount
.. automethod:: bitwise_not
.. automethod:: bitwise_not_
.. automethod:: bitwise_xor
.. automethod:: bitwise_xor_
.. automethod:: bmm
.. automethod:: bool
.. automethod:: byte
.. automethod:: cauchy_
.. automethod:: ceil
.. automethod:: ceil_
.. automethod:: char
.. automethod:: cholesky
.. automethod:: cholesky_inverse
.. automethod:: cholesky_solve
.. automethod:: chunk
.. automethod:: clamp
.. automethod:: clamp_
.. automethod:: clone
.. automethod:: contiguous
.. automethod:: copy_
.. automethod:: conj
.. automethod:: cos
.. automethod:: cos_
.. automethod:: cosh
.. automethod:: cosh_
.. automethod:: cpu
.. automethod:: cross
.. automethod:: cuda
.. automethod:: cumprod
.. automethod:: cumsum
.. automethod:: data_ptr
.. automethod:: dequantize
.. automethod:: det
.. automethod:: dense_dim
.. automethod:: detach :noindex:
.. automethod:: detach_ :noindex:
.. automethod:: diag
.. automethod:: diag_embed
.. automethod:: diagflat
.. automethod:: diagonal
.. automethod:: fill_diagonal_
.. automethod:: digamma
.. automethod:: digamma_
.. automethod:: dim
.. automethod:: dist
.. automethod:: div
.. automethod:: div_
.. automethod:: dot
.. automethod:: double
.. automethod:: eig
.. automethod:: element_size
.. automethod:: eq
.. automethod:: eq_
.. automethod:: equal
.. automethod:: erf
.. automethod:: erf_
.. automethod:: erfc
.. automethod:: erfc_
.. automethod:: erfinv
.. automethod:: erfinv_
.. automethod:: exp
.. automethod:: exp_
.. automethod:: expm1
.. automethod:: expm1_
.. automethod:: expand
.. automethod:: expand_as
.. automethod:: exponential_
.. automethod:: fft
.. automethod:: fill_
.. automethod:: flatten
.. automethod:: flip
.. automethod:: float
.. automethod:: floor
.. automethod:: floor_
.. automethod:: fmod
.. automethod:: fmod_
.. automethod:: frac
.. automethod:: frac_
.. automethod:: gather
.. automethod:: ge
.. automethod:: ge_
.. automethod:: geometric_
.. automethod:: geqrf
.. automethod:: ger
.. automethod:: get_device
.. automethod:: gt
.. automethod:: gt_
.. automethod:: half
.. automethod:: hardshrink
.. automethod:: histc
.. automethod:: ifft
.. automethod:: imag
.. automethod:: index_add_
.. automethod:: index_add
.. automethod:: index_copy_
.. automethod:: index_copy
.. automethod:: index_fill_
.. automethod:: index_fill
.. automethod:: index_put_
.. automethod:: index_put
.. automethod:: index_select
.. automethod:: indices
.. automethod:: int
.. automethod:: int_repr
.. automethod:: inverse
.. automethod:: irfft
.. automethod:: is_contiguous
.. automethod:: is_floating_point
.. autoattribute:: is_leaf :noindex:
.. automethod:: is_pinned
.. automethod:: is_set_to
.. automethod:: is_shared
.. automethod:: is_signed
.. autoattribute:: is_sparse
.. automethod:: item
.. automethod:: kthvalue
.. automethod:: le
.. automethod:: le_
.. automethod:: lerp
.. automethod:: lerp_
.. automethod:: lgamma
.. automethod:: lgamma_
.. automethod:: log
.. automethod:: log_
.. automethod:: logdet
.. automethod:: log10
.. automethod:: log10_
.. automethod:: log1p
.. automethod:: log1p_
.. automethod:: log2
.. automethod:: log2_
.. automethod:: log_normal_
.. automethod:: logsumexp
.. automethod:: logical_not
.. automethod:: logical_not_
.. automethod:: logical_xor
.. automethod:: logical_xor_
.. automethod:: long
.. automethod:: lstsq
.. automethod:: lt
.. automethod:: lt_
.. automethod:: lu
.. automethod:: lu_solve
.. automethod:: map_
.. automethod:: masked_scatter_
.. automethod:: masked_scatter
.. automethod:: masked_fill_
.. automethod:: masked_fill
.. automethod:: masked_select
.. automethod:: matmul
.. automethod:: matrix_power
.. automethod:: max
.. automethod:: mean
.. automethod:: median
.. automethod:: min
.. automethod:: mm
.. automethod:: mode
.. automethod:: mul
.. automethod:: mul_
.. automethod:: multinomial
.. automethod:: mv
.. automethod:: mvlgamma
.. automethod:: mvlgamma_
.. automethod:: narrow
.. automethod:: narrow_copy
.. automethod:: ndimension
.. automethod:: ne
.. automethod:: ne_
.. automethod:: neg
.. automethod:: neg_
.. automethod:: nelement
.. automethod:: nonzero
.. automethod:: norm
.. automethod:: normal_
.. automethod:: numel
.. automethod:: numpy
.. automethod:: orgqr
.. automethod:: ormqr
.. automethod:: permute
.. automethod:: pin_memory
.. automethod:: pinverse
.. automethod:: polygamma
.. automethod:: polygamma_
.. automethod:: pow
.. automethod:: pow_
.. automethod:: prod
.. automethod:: put_
.. automethod:: qr
.. automethod:: qscheme
.. automethod:: q_scale
.. automethod:: q_zero_point
.. automethod:: q_per_channel_scales
.. automethod:: q_per_channel_zero_points
.. automethod:: q_per_channel_axis
.. automethod:: random_
.. automethod:: reciprocal
.. automethod:: reciprocal_
.. automethod:: record_stream
.. automethod:: register_hook :noindex:
.. automethod:: remainder
.. automethod:: remainder_
.. automethod:: real
.. automethod:: renorm
.. automethod:: renorm_
.. automethod:: repeat
.. automethod:: repeat_interleave
.. autoattribute:: requires_grad :noindex:
.. automethod:: requires_grad_
.. automethod:: reshape
.. automethod:: reshape_as
.. automethod:: resize_
.. automethod:: resize_as_
.. automethod:: retain_grad :noindex:
.. automethod:: rfft
.. automethod:: roll
.. automethod:: rot90
.. automethod:: round
.. automethod:: round_
.. automethod:: rsqrt
.. automethod:: rsqrt_
.. automethod:: scatter
.. automethod:: scatter_
.. automethod:: scatter_add_
.. automethod:: scatter_add
.. automethod:: select
.. automethod:: set_
.. automethod:: share_memory_
.. automethod:: short
.. automethod:: sigmoid
.. automethod:: sigmoid_
.. automethod:: sign
.. automethod:: sign_
.. automethod:: sin
.. automethod:: sin_
.. automethod:: sinh
.. automethod:: sinh_
.. automethod:: size
.. automethod:: slogdet
.. automethod:: solve
.. automethod:: sort
.. automethod:: split
.. automethod:: sparse_mask
.. automethod:: sparse_dim
.. automethod:: sqrt
.. automethod:: sqrt_
.. automethod:: squeeze
.. automethod:: squeeze_
.. automethod:: std
.. automethod:: stft
.. automethod:: storage
.. automethod:: storage_offset
.. automethod:: storage_type
.. automethod:: stride
.. automethod:: sub
.. automethod:: sub_
.. automethod:: sum
.. automethod:: sum_to_size
.. automethod:: svd
.. automethod:: symeig
.. automethod:: t
.. automethod:: t_
.. automethod:: to
.. automethod:: to_mkldnn
.. automethod:: take
.. automethod:: tan
.. automethod:: tan_
.. automethod:: tanh
.. automethod:: tanh_
.. automethod:: tolist
.. automethod:: topk
.. automethod:: to_sparse
.. automethod:: trace
.. automethod:: transpose
.. automethod:: transpose_
.. automethod:: triangular_solve
.. automethod:: tril
.. automethod:: tril_
.. automethod:: triu
.. automethod:: triu_
.. automethod:: trunc
.. automethod:: trunc_
.. automethod:: type
.. automethod:: type_as
.. automethod:: unbind
.. automethod:: unfold
.. automethod:: uniform_
.. automethod:: unique
.. automethod:: unique_consecutive
.. automethod:: unsqueeze
.. automethod:: unsqueeze_
.. automethod:: values
.. automethod:: var
.. automethod:: view
.. automethod:: view_as
.. automethod:: where
.. automethod:: zero_
The following methods are unique to :class:`torch.BoolTensor`.
.. automethod:: all
.. automethod:: any