-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathdatagen.py
540 lines (410 loc) · 18.2 KB
/
datagen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
from __future__ import print_function
import os
import random
import torch
import torch.utils.data as data
import torchvision.transforms as transforms
from PIL import Image, ImageDraw
from encoder import DataEncoder
import xlrd
import numpy as np
class ListDataset(data.Dataset):
def __init__(self, root, labelmap_path, gt_extension, is_train, transform, input_image_size, num_crops, original_img_size):
'''
Args:
root: (str) ditectory to images.
labelmap_path: (str) excel file path to contain classes
gt_extension: (str) extension of gt file
is_train: (boolean) train or test.
transform: ([transforms]) image transforms.
input_image_size: (int) image size for train.
num_crops: (int) how many crops the image(-1~5)
original_img_size: (int) original image size
'''
self.root = root
self.is_train = is_train
self.transform = transform
self.input_size = input_image_size
self.original_img_size = original_img_size
self.fnames = []
self.offsets = []
self.boxes = []
self.labels = []
self.data_encoder = DataEncoder()
self.num_crops = num_crops
# read label map
workbook = xlrd.open_workbook(labelmap_path)
work_sheet = workbook.sheet_by_index(0)
num_of_rows = work_sheet.nrows
label_map = []
for idx in range(0, num_of_rows):
label_map.append([work_sheet.row_values(idx)[0].encode('ascii', 'ignore'), work_sheet.row_values(idx)[1]])
# read gt path
gt_files = []
img_files = []
num_images = 0
for (path, dir, files) in os.walk(self.root):
for filename in files:
ext = os.path.splitext(filename)[-1]
if ext == gt_extension:
gt_files.append(filename)
img_file = filename.replace(ext, ".jpg")
img_files.append(self.root+"/"+img_file)
num_images += 1
all_boxes = []
all_labels = []
# read gt files
for gt_file in gt_files:
f_read = open(self.root+"/"+gt_file, 'r')
lines = f_read.readlines()
box = []
label = []
for line in lines:
split_line = line.split("\t")
xmin = split_line[0]
ymin = split_line[1]
xmax = split_line[2]
ymax = split_line[3]
class_name = str(split_line[4].rstrip())
class_idx = self.convert_from_name_to_label(class_name, label_map)
if class_idx != 0:
box.append([float(xmin), float(ymin), float(xmax), float(ymax)])
label.append(int(class_idx))
all_boxes.append(box)
all_labels.append(label)
if num_crops <= 0:
for idx in range(0, num_images, 1):
self.fnames.append(img_files[idx])
self.boxes.append(torch.FloatTensor(all_boxes[idx]))
self.labels.append(torch.LongTensor(all_labels[idx]))
else:
for idx in range(0, num_images, 1):
ori_boxes = all_boxes[idx]
ori_labels = all_labels[idx]
offsets, crop_boxes, crop_labels = self.do_crop(ori_img_size=self.original_img_size,
target_img_size=self.input_size,
boxes=ori_boxes, labels=ori_labels)
num_offsets = offsets.__len__()
for idx_offset in range(0, num_offsets, 1):
self.fnames.append(img_files[idx])
self.offsets.append(offsets[idx_offset])
self.boxes.append(torch.FloatTensor(crop_boxes[idx_offset]))
self.labels.append(torch.LongTensor(crop_labels[idx_offset]))
self.num_samples = self.fnames.__len__()
def __getitem__(self, idx):
'''Load image.
Args:
idx: (int) image index.
Returns:
img: (tensor) image tensor.
loc_targets: (tensor) location targets.
cls_targets: (tensor) class label targets.
'''
# Load image and boxes.
fname = self.fnames[idx]
boxes = self.boxes[idx]
labels = self.labels[idx]
img = Image.open(fname)
if self.num_crops <= 0:
img, boxes = self.resize(img, boxes)
else:
offset = self.offsets[idx]
crop_rect = (offset[0], offset[1], (offset[0]+self.input_size), (offset[1]+self.input_size))
if offset[0] < 0 or offset[1] < 0:
print("negative offset!")
for box in boxes:
if box[0] < 0 or box[1] < 0 or box[2] > self.input_size or box[3] > self.input_size:
print("negative box coordinate!")
cropped_img = img.crop(crop_rect)
img = cropped_img
mask = torch.zeros(img.height, img.width).type(torch.LongTensor)
for box in boxes:
mask[int(box[1]):int(box[3]), int(box[0]):int(box[2])] = 1
# # Data augmentation while training.
# if self.is_train:
# cropped_img, boxes = self.random_flip(cropped_img, boxes)
# cropped_img, boxes = self.scale_jitter(cropped_img, boxes)
img = self.transform(img)
return img, boxes, labels, mask
def resize(self, img, boxes):
'''Resize the image shorter side to input_size.
Args:
img: (PIL.Image) image.
boxes: (tensor) object boxes, sized [#obj, 4].
Returns:
(PIL.Image) resized image.
(tensor) resized object boxes.
Reference:
https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/utils/blob.py
'''
w = h = self.input_size
ws = 1.0 * w / img.width
hs = 1.0 * h / img.height
scale = torch.Tensor([ws,hs,ws,hs])
return img.resize((w,h)), scale*boxes
def do_crop(self, ori_img_size, target_img_size, boxes, labels):
num_boxes = boxes.__len__()
num_labels = labels.__len__()
if num_boxes != num_labels:
print("error occur: Random crop")
rand_indices = [0, 1, 2, 3, 4]
np.random.shuffle(rand_indices)
output_offsets = []
output_boxes = []
output_labels = []
for box in boxes:
# box coordinate from 1. not 0.
xmin = box[0]
ymin = box[1]
xmax = box[2]
ymax = box[3]
width = (xmax - xmin)+1
height = (ymax - ymin)+1
if width < 0 or height< 0:
print("negative width/height")
continue
for iter_crop in range(0, self.num_crops, 1):
rand_idx = rand_indices[iter_crop]
margin = np.random.randint(16, 128, size=1)
if rand_idx == 0:
offset_x = xmin-1-margin[0]
offset_y = ymin-1-margin[0]
crop_maxx = offset_x + target_img_size
crop_maxy = offset_y + target_img_size
if crop_maxx > ori_img_size-1 or crop_maxy > ori_img_size-1:
continue
if offset_x < 0 or offset_y < 0:
continue
crop_rect = [offset_x, offset_y, target_img_size, target_img_size]
in_boxes, in_labels = self.find_boxes_in_crop(crop_rect, boxes, labels)
if in_boxes.__len__() == 0:
continue
output_offsets.append([offset_x, offset_y])
output_boxes.append(in_boxes)
output_labels.append(in_labels)
elif rand_idx == 1:
offset_x = xmin - (target_img_size - width)-1+margin[0]
offset_y = ymin-1-margin[0]
crop_maxx = offset_x + target_img_size
crop_maxy = offset_y + target_img_size
if crop_maxx > ori_img_size-1 or crop_maxy > ori_img_size-1:
continue
if offset_x < 0 or offset_y < 0:
continue
crop_rect = [offset_x, offset_y, target_img_size, target_img_size]
in_boxes, in_labels = self.find_boxes_in_crop(crop_rect, boxes, labels)
if in_boxes.__len__() == 0:
continue
output_offsets.append([offset_x, offset_y])
output_boxes.append(in_boxes)
output_labels.append(in_labels)
elif rand_idx == 2:
offset_x = xmin-1-margin[0]
offset_y = ymin - (target_img_size - height)-1+margin[0]
crop_maxx = offset_x + target_img_size
crop_maxy = offset_y + target_img_size
if crop_maxx > ori_img_size-1 or crop_maxy > ori_img_size-1:
continue
if offset_x < 0 or offset_y < 0:
continue
crop_rect = [offset_x, offset_y, target_img_size, target_img_size]
in_boxes, in_labels = self.find_boxes_in_crop(crop_rect, boxes, labels)
if in_boxes.__len__() == 0:
continue
output_offsets.append([offset_x, offset_y])
output_boxes.append(in_boxes)
output_labels.append(in_labels)
elif rand_idx == 3:
offset_x = xmin - (target_img_size - width)-1+margin[0]
offset_y = ymin - (target_img_size - height)-1+margin[0]
crop_maxx = offset_x + target_img_size
crop_maxy = offset_y + target_img_size
if crop_maxx > ori_img_size-1 or crop_maxy > ori_img_size-1:
continue
if offset_x < 0 or offset_y < 0:
continue
crop_rect = [offset_x, offset_y, target_img_size, target_img_size]
in_boxes, in_labels = self.find_boxes_in_crop(crop_rect, boxes, labels)
if in_boxes.__len__() == 0:
continue
output_offsets.append([offset_x, offset_y])
output_boxes.append(in_boxes)
output_labels.append(in_labels)
elif rand_idx == 4:
rand_direction = np.random.randint(-1, 1, size=1)
offset_x = (xmin - ((target_img_size-width)/2)-1) + (rand_direction[0] * margin[0])
offset_y = (ymin - ((target_img_size-height)/2)-1) + (rand_direction[0] * margin[0])
crop_maxx = offset_x + target_img_size
crop_maxy = offset_y + target_img_size
if crop_maxx > ori_img_size-1 or crop_maxy > ori_img_size-1:
continue
if offset_x < 0 or offset_y < 0:
continue
crop_rect = [offset_x, offset_y, target_img_size, target_img_size]
in_boxes, in_labels = self.find_boxes_in_crop(crop_rect, boxes, labels)
if in_boxes.__len__() == 0:
continue
output_offsets.append([offset_x, offset_y])
output_boxes.append(in_boxes)
output_labels.append(in_labels)
else:
print("exceed possible crop num")
return output_offsets, output_boxes, output_labels
def find_boxes_in_crop(self, crop_rect, boxes, labels):
num_boxes = boxes.__len__()
num_labels = labels.__len__()
if num_boxes != num_labels:
print("error occur: Random crop")
boxes_in_crop=[]
labels_in_crop = []
for idx in range(0, num_boxes, 1):
box_in_crop, label, is_contain = self.find_box_in_crop(crop_rect, boxes[idx], labels[idx])
if is_contain is True:
boxes_in_crop.append(box_in_crop)
labels_in_crop.append(label)
return boxes_in_crop, labels_in_crop
def find_box_in_crop(self, rect, box, label):
rect_minx = rect[0]
rect_miny = rect[1]
rect_width = rect[2]
rect_height = rect[3]
box_minx = box[0]
box_miny = box[1]
box_maxx = box[2]
box_maxy = box[3]
box_width = (box_maxx - box_minx)+1
box_height = (box_maxy - box_miny)+1
occlusion_ratio = 0.3
occlusion_width = int(box_width * occlusion_ratio) * -1
occlusion_height = int(box_height * occlusion_ratio) * -1
box_in_crop_minx = box_minx - rect_minx
if box_in_crop_minx <= occlusion_width or box_in_crop_minx >= rect_width:
box_in_rect = []
return box_in_rect, label, False
box_in_crop_miny = box_miny - rect_miny
if box_in_crop_miny <= occlusion_height or box_in_crop_miny >= rect_height:
box_in_rect = []
return box_in_rect, label, False
box_in_crop_maxx = box_maxx - rect_minx
if rect_width - box_in_crop_maxx <= occlusion_width or box_in_crop_maxx <= 0:
box_in_rect = []
return box_in_rect, label, False
box_in_crop_maxy = box_maxy - rect_miny
if rect_height - box_in_crop_maxy <= occlusion_height or box_in_crop_maxy <= 0:
box_in_rect = []
return box_in_rect, label, False
if box_in_crop_minx < 0:
box_in_crop_minx = 0
if box_in_crop_miny < 0:
box_in_crop_miny = 0
if rect_width - box_in_crop_maxx < 0:
box_in_crop_maxx = rect_width-1
if rect_height - box_in_crop_maxy < 0:
box_in_crop_maxy = rect_height-1
box_in_rect = [box_in_crop_minx, box_in_crop_miny, box_in_crop_maxx, box_in_crop_maxy]
return box_in_rect, label, True
def random_flip(self, img, boxes):
'''Randomly flip the image and adjust the boxes.
For box (xmin, ymin, xmax, ymax), the flipped box is:
(w-xmax, ymin, w-xmin, ymax).
Args:
img: (PIL.Image) image.
boxes: (tensor) object boxes, sized [#obj, 4].
Returns:
img: (PIL.Image) randomly flipped image.
boxes: (tensor) randomly flipped boxes, sized [#obj, 4].
Reference:
https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/utils/blob.py
'''
if random.random() < 0.5:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
w = img.width
xmin = w - boxes[:,2]
xmax = w - boxes[:,0]
boxes[:,0] = xmin
boxes[:,2] = xmax
return img, boxes
def scale_jitter(self, img, boxes):
'''Scale image size randomly to [3/4,4/3].
Args:
img: (PIL.Image) image.
boxes: (tensor) object boxes, sized [#obj, 4].
Returns:
img: (PIL.Image) scaled image.
boxes: (tensor) scaled object boxes, sized [#obj, 4].
Reference:
https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/utils/blob.py
'''
imw, imh = img.size
sw = random.uniform(3/4., 4/3.)
sh = random.uniform(3/4., 4/3.)
w = int(imw*sw)
h = int(imh*sh)
img = img.resize((w,h))
boxes[:,::2] *= sw
boxes[:,1::2] *= sh
return img, boxes
def collate_fn(self, batch):
'''Pad images and encode targets.
As for images are of different sizes, we need to pad them to the same size.
Args:
batch: (list) of images, cls_targets, loc_targets.
Returns:
padded images, stacked cls_targets, stacked loc_targets.
Reference:
https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/utils/blob.py
'''
imgs = [x[0] for x in batch]
boxes = [x[1] for x in batch]
labels = [x[2] for x in batch]
masks = [x[3] for x in batch]
max_h = max([im.size(1) for im in imgs])
max_w = max([im.size(2) for im in imgs])
num_imgs = len(imgs)
inputs = torch.zeros(num_imgs, 3, max_h, max_w)
mask_targets = torch.zeros(num_imgs, max_h, max_w).type(torch.LongTensor)
loc_targets = []
cls_targets = []
for i in range(num_imgs):
im = imgs[i]
imh, imw = im.size(1), im.size(2)
inputs[i,:,:imh,:imw] = im
# Encode data.
loc_target, cls_target = self.data_encoder.encode(boxes[i], labels[i], input_size=(max_w,max_h))
loc_targets.append(loc_target)
cls_targets.append(cls_target)
mask = masks[i]
mask_targets[i,:imh,:imw] = mask
return inputs, torch.stack(loc_targets), torch.stack(cls_targets), mask_targets
def __len__(self):
return self.num_samples
def convert_from_name_to_label(self, class_name, label_map):
label = 0
for item in label_map:
if item[0] == class_name:
label = int(item[1])
break
return label
def test():
import torchvision
# transform = transforms.Compose([
# transforms.ToTensor(),
# transforms.Normalize((0.485,0.456,0.406), (0.229,0.224,0.225))
# ])
transform = transforms.Compose([
transforms.ToTensor()
])
dataset = ListDataset(root="../train",gt_extension=".txt",
labelmap_path="class_label_map.xlsx", is_train=True, transform=transform, input_image_size=512,
num_crops=1, original_img_size=1024)
print(dataset.__len__())
dataloader = torch.utils.data.DataLoader(dataset, batch_size=10, shuffle=True, num_workers=1, collate_fn=dataset.collate_fn)
for images, loc_targets, cls_targets, mask_targets in dataloader:
print(images.size())
print(loc_targets.size())
print(cls_targets.size())
print(mask_targets.size())
grid = torchvision.utils.make_grid(images, 1)
torchvision.utils.save_image(grid,'a.jpg')
break
# test()