-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathutils.py
257 lines (210 loc) · 6.62 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
'''Some helper functions for PyTorch.'''
import os
import sys
import time
import math
import torch
import torch.nn as nn
def get_mean_and_std(dataset, max_load=10000):
'''Compute the mean and std value of images.'''
mean = torch.zeros(3)
std = torch.zeros(3)
print('==> Computing mean and std..')
N = min(max_load, len(dataset))
for i in range(N):
print(i)
im,_,_ = dataset.load(1)
for j in range(3):
mean[j] += im[:,j,:,:].mean()
std[j] += im[:,j,:,:].std()
mean.div_(N)
std.div_(N)
return mean, std
def mask_select(input, mask, dim=0):
'''Select tensor rows/cols using a mask tensor.
Args:
input: (tensor) input tensor, sized [N,M].
mask: (tensor) mask tensor, sized [N,] or [M,].
dim: (tensor) mask dim.
Returns:
(tensor) selected rows/cols.
Example:
>>> a = torch.randn(4,2)
>>> a
-0.3462 -0.6930
0.4560 -0.7459
-0.1289 -0.9955
1.7454 1.9787
[torch.FloatTensor of size 4x2]
>>> i = a[:,0] > 0
>>> i
0
1
0
1
[torch.ByteTensor of size 4]
>>> masked_select(a, i, 0)
0.4560 -0.7459
1.7454 1.9787
[torch.FloatTensor of size 2x2]
'''
index = mask.nonzero().squeeze(1)
return input.index_select(dim, index)
def meshgrid(x, y, row_major=True):
'''Return meshgrid in range x & y.
Args:
x: (int) first dim range.
y: (int) second dim range.
row_major: (bool) row major or column major.
Returns:
(tensor) meshgrid, sized [x*y,2]
Example:
>> meshgrid(3,2)
0 0
1 0
2 0
0 1
1 1
2 1
[torch.FloatTensor of size 6x2]
>> meshgrid(3,2,row_major=False)
0 0
0 1
0 2
1 0
1 1
1 2
[torch.FloatTensor of size 6x2]
'''
a = torch.arange(0,x)
b = torch.arange(0,y)
xx = a.repeat(y).view(-1,1)
yy = b.view(-1,1).repeat(1,x).view(-1,1)
return torch.cat([xx,yy],1) if row_major else torch.cat([yy,xx],1)
def change_box_order(boxes, order):
'''Change box order between (xmin,ymin,xmax,ymax) and (xcenter,ycenter,width,height).
Args:
boxes: (tensor) bounding boxes, sized [N,4].
order: (str) either 'xyxy2xywh' or 'xywh2xyxy'.
Returns:
(tensor) converted bounding boxes, sized [N,4].
'''
assert order in ['xyxy2xywh','xywh2xyxy']
a = boxes[:,:2]
b = boxes[:,2:]
if order == 'xyxy2xywh':
return torch.cat([(a+b)/2, b-a], 1)
return torch.cat([a-(b/2), a+(b/2)], 1)
def box_iou(box1, box2, order='xyxy'):
'''Compute the intersection over union of two set of boxes.
The default box order is (xmin, ymin, xmax, ymax).
Args:
box1: (tensor) bounding boxes, sized [N,4].
box2: (tensor) bounding boxes, sized [M,4].
order: (str) box order, either 'xyxy' or 'xywh'.
Return:
(tensor) iou, sized [N,M].
Reference:
https://github.com/chainer/chainercv/blob/master/chainercv/utils/bbox/bbox_iou.py
'''
if order == 'xywh':
box1 = change_box_order(box1, 'xywh2xyxy')
box2 = change_box_order(box2, 'xywh2xyxy')
N = box1.size(0)
M = box2.size(0)
lt = torch.max(box1[:,None,:2], box2[:,:2]) # [N,M,2]
rb = torch.min(box1[:,None,2:], box2[:,2:]) # [N,M,2]
wh = (rb-lt+1).clamp(min=0) # [N,M,2]
inter = wh[:,:,0] * wh[:,:,1] # [N,M]
area1 = (box1[:,2]-box1[:,0]) * (box1[:,3]-box1[:,1]) # [N,]
area2 = (box2[:,2]-box2[:,0]) * (box2[:,3]-box2[:,1]) # [M,]
iou = inter / (area1[:,None] + area2 - inter)
return iou
def sort_with_indices(values, indices):
num_elem = values.numel()
'''bubble sort'''
for current in range(0, num_elem, 1):
for next_idx in range(current+1, num_elem, 1):
if values[next_idx] > values[current]:
tmp_value = values[current]
tmp_idx = indices[current]
values[current] = values[next_idx]
indices[current] = indices[next_idx]
values[next_idx] = tmp_value
indices[next_idx] = tmp_idx
def box_nms(bboxes, scores, threshold=0.5, mode='union'):
'''Non maximum suppression.
Args:
bboxes: (tensor) bounding boxes, sized [N,4].
scores: (tensor) bbox scores, sized [N,].
threshold: (float) overlap threshold.
mode: (str) 'union' or 'min'.
Returns:
keep: (tensor) selected indices.
Reference:
https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/nms/py_cpu_nms.py
'''
sigma = 0.5
x1 = bboxes[:,0]
y1 = bboxes[:,1]
x2 = bboxes[:,2]
y2 = bboxes[:,3]
areas = (x2-x1+1) * (y2-y1+1)
ordered_score, ordered_idx = scores.sort(0, descending=True)
keep = []
while ordered_idx.numel() > 0:
'''soft NMS'''
if ordered_score[0] < threshold:
break
max_idx = ordered_idx[0]
keep.append(max_idx)
if ordered_idx.numel() == 1:
break
xx1 = x1[ordered_idx[1:]].clamp(min=x1[max_idx])
yy1 = y1[ordered_idx[1:]].clamp(min=y1[max_idx])
xx2 = x2[ordered_idx[1:]].clamp(max=x2[max_idx])
yy2 = y2[ordered_idx[1:]].clamp(max=y2[max_idx])
w = (xx2-xx1+1).clamp(min=0)
h = (yy2-yy1+1).clamp(min=0)
inter = w*h
if mode == 'union':
ovr = inter / (areas[max_idx] + areas[ordered_idx[1:]] - inter)
elif mode == 'min':
ovr = inter / areas[ordered_idx[1:]].clamp(max=areas[max_idx])
else:
raise TypeError('Unknown nms mode: %s.' % mode)
'''soft NMS'''
weights = torch.exp(-1. * (torch.pow(ovr, 2) / sigma))
ordered_idx = ordered_idx[1:]
ordered_score = weights * ordered_score[1:]
sort_with_indices(ordered_score, ordered_idx)
'''NMS'''
# ids = (ovr<=threshold).nonzero().squeeze()
# if ids.numel() == 0:
# break
# ordered_idx = ordered_idx[ids+1]
return torch.LongTensor(keep)
def softmax(x):
'''Softmax along a specific dimension.
Args:
x: (tensor) input tensor, sized [N,D].
Returns:
(tensor) softmaxed tensor, sized [N,D].
'''
xmax, _ = x.max(1)
x_shift = x - xmax.view(-1,1)
x_exp = x_shift.exp()
return x_exp / x_exp.sum(1).view(-1,1)
def one_hot_embedding(labels, num_classes):
'''Embedding labels to one-hot form.
Args:
labels: (LongTensor) class labels, sized [N,].
num_classes: (int) number of classes.
Returns:
(tensor) encoded labels, sized [N,#classes].
'''
N = labels.size(0)
D = num_classes
y = torch.zeros(N,D)
y[torch.arange(0,N).long(),labels] = 1
return y