-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtestset.py
236 lines (204 loc) · 8.43 KB
/
testset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
"""
Generate YOHO input for Testset.
PC*60 rotations->FCGF backbone-> FCGF Group feature for PC keypoints.
"""
import time
import numpy as np
import argparse
import open3d as o3d
import torch
from tqdm import tqdm
import MinkowskiEngine as ME
from dataops.dataset import get_dataset_name
from utils.utils import make_non_exists_dir
from backbone.fcgf import load_model
from utils.knn_search import knn_module
from utils.utils_o3d import make_open3d_point_cloud
class FCGFDataset():
def __init__(self,datasets,config):
self.cfg = config
self.points={}
self.pointlist=[]
self.voxel_size = config.voxel_size
self.datasets=datasets
self.Rgroup=np.load(f'{self.cfg.groupdir}/Rotation.npy')
for scene,dataset in self.datasets.items():
if scene=='wholesetname':continue
if scene=='valscenes':continue
for pc_id in dataset.pc_ids:
for g_id in range(60):
self.pointlist.append((scene,pc_id,g_id))
pts = self.datasets[scene].get_pc_o3d(pc_id)
# pts = pts.voxel_down_sample(config.voxel_size*0.4)
pts = np.array(pts.points)
self.points[f'{scene}_{pc_id}']=pts
def __getitem__(self, idx):
scene,pc_id,g_id=self.pointlist[idx]
xyz0 = self.points[f'{scene}_{pc_id}']
[email protected][g_id].T
# Voxelization
_, sel0 = ME.utils.sparse_quantize(xyz0 / self.voxel_size, return_index=True)
# Make point clouds using voxelized points
pcd0 = make_open3d_point_cloud(xyz0)
# Select features and points using the returned voxelized indices
pcd0.points = o3d.utility.Vector3dVector(np.array(pcd0.points)[sel0])
# Get coords
xyz0 = np.array(pcd0.points)
feats=np.ones((xyz0.shape[0], 1))
coords0 = np.floor(xyz0 / self.voxel_size)
return (xyz0, coords0, feats ,self.pointlist[idx])
def __len__(self):
return len(self.pointlist)
class testset_create():
def __init__(self,config):
self.config=config
self.dataset_name=self.config.dataset
self.output_dir= self.config.outdir
self.origin_dir=self.config.datadir
self.datasets=get_dataset_name(self.dataset_name,self.origin_dir)
self.Rgroup=np.load(f'{self.config.groupdir}/Rotation.npy')
self.knn=knn_module.KNN(1)
self.get_kps()
def get_kps(self):
#preload the G kps
self.kps={}
for scene,dataset in self.datasets.items():
if scene=='wholesetname':continue
if scene=='valscenes':continue
for pc_id in dataset.pc_ids:
kps = dataset.get_kps(pc_id)
for gid in range(self.Rgroup.shape[0]):
kps_g = [email protected][gid].T
self.kps[f'{scene}_{pc_id}_{gid}']=torch.from_numpy(kps_g.T[None,:,:].astype(np.float32)).cuda()
def collate_fn(self,list_data):
xyz0, coords0, feats0, scenepc = list(
zip(*list_data))
xyz_batch0 = []
dsxyz_batch0=[]
batch_id = 0
def to_tensor(x):
if isinstance(x, torch.Tensor):
return x
elif isinstance(x, np.ndarray):
return torch.from_numpy(x)
else:
raise ValueError(f'Can not convert to torch tensor, {x}')
for batch_id, _ in enumerate(coords0):
xyz_batch0.append(to_tensor(xyz0[batch_id]))
_, inds = ME.utils.sparse_quantize(coords0[batch_id], return_index=True)
dsxyz_batch0.append(to_tensor(xyz0[batch_id][inds]))
coords_batch0, feats_batch0 = ME.utils.sparse_collate(coords0, feats0)
# Concatenate all lists
xyz_batch0 = torch.cat(xyz_batch0, 0).float()
dsxyz_batch0=torch.cat(dsxyz_batch0, 0).float()
cuts_node=0
cuts=[0]
for batch_id, _ in enumerate(coords0):
cuts_node+=coords0[batch_id].shape[0]
cuts.append(cuts_node)
return {
'pcd0': xyz_batch0,
'dspcd0':dsxyz_batch0,
'scenepc':scenepc,
'cuts':cuts,
'sinput0_C': coords_batch0,
'sinput0_F': feats_batch0.float(),
}
def Feature_extracting(self, data_loader):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
checkpoint = torch.load(self.config.model)
config = checkpoint['config']
features={}
features_gid={}
for scene,dataset in self.datasets.items():
if scene=='wholesetname':continue
if scene=='valscenes':continue
for pc_id in dataset.pc_ids:
features[f'{scene}_{pc_id}']=[]
features_gid[f'{scene}_{pc_id}']=[]
num_feats = 1
Model = load_model(config.model)
model = Model(
num_feats,
config.model_n_out,
bn_momentum=0.05,
normalize_feature=config.normalize_feature,
conv1_kernel_size=config.conv1_kernel_size,
D=3)
model.load_state_dict(checkpoint['state_dict'])
model = model.to(device)
model.eval()
with torch.no_grad():
for i, input_dict in enumerate(tqdm(data_loader)):
sinput0 = ME.SparseTensor(
input_dict['sinput0_F'].to(device),
coordinates=input_dict['sinput0_C'].to(device))
F0 = model(sinput0).F
F0 = F0.detach()
cuts=input_dict['cuts']
scene_pc=input_dict['scenepc']
for inb in range(len(scene_pc)):
scene,pc_id,g_id=scene_pc[inb]
make_non_exists_dir(f'{self.output_dir}/{self.dataset_name}/{scene}/FCGF_Input_Group_feature')
feature=F0[cuts[inb]:cuts[inb+1]]
pts=input_dict['dspcd0'][cuts[inb]:cuts[inb+1]]#*config.voxel_size
Keys_i=self.kps[f'{scene}_{pc_id}_{g_id}']
xyz_down=pts.T[None,:,:].cuda() #1,3,n
d,nnindex=self.knn(xyz_down,Keys_i)
nnindex=nnindex[0,0]
one_R_output=feature[nnindex,:].cpu().numpy()#5000*32
features[f'{scene}_{pc_id}'].append(one_R_output[:,:,None])
features_gid[f'{scene}_{pc_id}'].append(g_id)
if len(features_gid[f'{scene}_{pc_id}'])==60:
sort_args=np.array(features_gid[f'{scene}_{pc_id}'])
sort_args=np.argsort(sort_args)
output=np.concatenate(features[f'{scene}_{pc_id}'],axis=-1)[:,:,sort_args]
np.save(f'{self.output_dir}/{self.dataset_name}/{scene}/FCGF_Input_Group_feature/{pc_id}.npy',output)
features[f'{scene}_{pc_id}']=[]
def batch_feature_extraction(self):
dset=FCGFDataset(self.datasets,self.config)
loader = torch.utils.data.DataLoader(
dset,
batch_size=4, # if out of memory change the batch_size to 1
shuffle=False,
num_workers=16,
collate_fn=self.collate_fn,
pin_memory=False,
drop_last=False)
self.Feature_extracting(loader)
if __name__=="__main__":
basedir = './data'
parser = argparse.ArgumentParser()
parser.add_argument(
'--model',
default='./checkpoints/FCGF/backbone/best_val_checkpoint.pth',
type=str,
help='path to backbone latest checkpoint (default: None)')
parser.add_argument(
'--outdir',
default=f'{basedir}/YOHO_FCGF/Testset',
type=str,
help='path to output dir')
parser.add_argument(
'--voxel_size',
default=0.025,
type=float,
help='voxel size to preprocess point cloud')
parser.add_argument(
'--dataset',
default='demo',
type=str,
help='datasetname')
parser.add_argument(
'--datadir',
default=f'{basedir}/origin_data',
type=str,
help='dir for origindata')
parser.add_argument(
'--groupdir',
default='./utils/group_related',
type=str,
help='group related files')
args = parser.parse_args()
testset_creater=testset_create(args)
testset_creater.batch_feature_extraction()