-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathmodule_color_to_normals.py
56 lines (47 loc) · 1.75 KB
/
module_color_to_normals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
import pathlib
import onnxruntime as ort
try :
from . import utils_inference
except ImportError:
# Cannot use . import when using as CLI
import utils_inference
# Disable MS telemetry
ort.disable_telemetry_events()
def apply(color_img, overlap, progress_callback):
"""Computes a normal map from the given color map. 'color_img' must be a numpy array
in C,H,W format (with C as RGB). 'overlap' must be one of 'SMALL', 'MEDIUM', 'LARGE'."""
# Remove alpha & convert to grayscale
img = np.mean(color_img[0:3], axis=0, keepdims=True)
# Split image in tiles
print("DeepBump Color → Normals : tilling")
tile_size = 256
overlaps = {
"SMALL": tile_size // 6,
"MEDIUM": tile_size // 4,
"LARGE": tile_size // 2,
}
stride_size = tile_size - overlaps[overlap]
tiles, paddings = utils_inference.tiles_split(
img, (tile_size, tile_size), (stride_size, stride_size)
)
# Load model
print("DeepBump Color → Normals : loading model")
addon_path = str(pathlib.Path(__file__).parent.absolute())
ort_session = ort.InferenceSession(addon_path + "/deepbump256.onnx")
# Predict normal map for each tile
print("DeepBump Color → Normals : generating")
pred_tiles = utils_inference.tiles_infer(
tiles, ort_session, progress_callback=progress_callback
)
# Merge tiles
print("DeepBump Color → Normals : merging")
pred_img = utils_inference.tiles_merge(
pred_tiles,
(stride_size, stride_size),
(3, img.shape[1], img.shape[2]),
paddings,
)
# Normalize each pixel to unit vector
pred_img = utils_inference.normalize(pred_img)
return pred_img