-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTip5.sage
362 lines (314 loc) · 16 KB
/
Tip5.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
# --------------------------------------------------------------------------------------------
# Constants from Tip5 Rust implementation
# https://github.com/Neptune-Crypto/twenty-first/blob/master/twenty-first/src/math/tip5.rs
# --------------------------------------------------------------------------------------------
from hashlib import sha256
from blake3 import blake3
SHA256 = lambda x: sha256(x).digest()
Blake3 = lambda x, n: blake3(x).digest(n)
LOOKUP_TABLE = [
0, 7, 26, 63, 124, 215, 85, 254, 214, 228, 45, 185, 140, 173, 33, 240, 29, 177, 176, 32, 8,
110, 87, 202, 204, 99, 150, 106, 230, 14, 235, 128, 213, 239, 212, 138, 23, 130, 208, 6, 44,
71, 93, 116, 146, 189, 251, 81, 199, 97, 38, 28, 73, 179, 95, 84, 152, 48, 35, 119, 49, 88,
242, 3, 148, 169, 72, 120, 62, 161, 166, 83, 175, 191, 137, 19, 100, 129, 112, 55, 221, 102,
218, 61, 151, 237, 68, 164, 17, 147, 46, 234, 203, 216, 22, 141, 65, 57, 123, 12, 244, 54, 219,
231, 96, 77, 180, 154, 5, 253, 133, 165, 98, 195, 205, 134, 245, 30, 9, 188, 59, 142, 186, 197,
181, 144, 92, 31, 224, 163, 111, 74, 58, 69, 113, 196, 67, 246, 225, 10, 121, 50, 60, 157, 90,
122, 2, 250, 101, 75, 178, 159, 24, 36, 201, 11, 243, 132, 198, 190, 114, 233, 39, 52, 21, 209,
108, 238, 91, 187, 18, 104, 194, 37, 153, 34, 200, 143, 126, 155, 236, 118, 64, 80, 172, 89,
94, 193, 135, 183, 86, 107, 252, 13, 167, 206, 136, 220, 207, 103, 171, 160, 76, 182, 227, 217,
158, 56, 174, 4, 66, 109, 139, 162, 184, 211, 249, 47, 125, 232, 117, 43, 16, 42, 127, 20, 241,
25, 149, 105, 156, 51, 53, 168, 145, 247, 223, 79, 78, 226, 15, 222, 82, 115, 70, 210, 27, 41,
1, 170, 40, 131, 192, 229, 248, 255,
]
# NUM_ROUNDS * STATESIZE = 5 * 16
ROUND_CONSTANTS = [
13630775303355457758,
16896927574093233874,
10379449653650130495,
1965408364413093495,
15232538947090185111,
15892634398091747074,
3989134140024871768,
2851411912127730865,
8709136439293758776,
3694858669662939734,
12692440244315327141,
10722316166358076749,
12745429320441639448,
17932424223723990421,
7558102534867937463,
15551047435855531404,
17532528648579384106,
5216785850422679555,
15418071332095031847,
11921929762955146258,
9738718993677019874,
3464580399432997147,
13408434769117164050,
264428218649616431,
4436247869008081381,
4063129435850804221,
2865073155741120117,
5749834437609765994,
6804196764189408435,
17060469201292988508,
9475383556737206708,
12876344085611465020,
13835756199368269249,
1648753455944344172,
9836124473569258483,
12867641597107932229,
11254152636692960595,
16550832737139861108,
11861573970480733262,
1256660473588673495,
13879506000676455136,
10564103842682358721,
16142842524796397521,
3287098591948630584,
685911471061284805,
5285298776918878023,
18310953571768047354,
3142266350630002035,
549990724933663297,
4901984846118077401,
11458643033696775769,
8706785264119212710,
12521758138015724072,
11877914062416978196,
11333318251134523752,
3933899631278608623,
16635128972021157924,
10291337173108950450,
4142107155024199350,
16973934533787743537,
11068111539125175221,
17546769694830203606,
5315217744825068993,
4609594252909613081,
3350107164315270407,
17715942834299349177,
9600609149219873996,
12894357635820003949,
4597649658040514631,
7735563950920491847,
1663379455870887181,
13889298103638829706,
7375530351220884434,
3502022433285269151,
9231805330431056952,
9252272755288523725,
10014268662326746219,
15565031632950843234,
1209725273521819323,
6024642864597845108,
]
def Gen_RoundConstant(p, m=16, N=5):
'''
checked with constants in [1]
'''
RC = [[0 for _ in range(m)] for _ in range(N)]
Fp = FiniteField(p)
mul = Fp(2**64)
mul_inverse = mul^-1
for r in range(N):
for i in range(m):
# get byte str first
i_value = int(i + r * m)
bytes_val = i_value.to_bytes(1, 'big')
# print(bytes_val)
seed_str = "{}".format("Tip5")
# concat then hash
byte_str = Blake3(bytes(seed_str, "ascii") + bytes_val, m)
# process bytes into integer
integer = Fp(sum((2**8)**j * byte_str[j] for j in range(m)))
integer *= mul_inverse
RC[r][i] = integer
RC[r] = vector(Fp, RC[r])
return RC
MDS_MATRIX_FIRST_COLUMN = [
61402, 1108, 28750, 33823, 7454, 43244, 53865, 12034, 56951, 27521, 41351, 40901, 12021, 59689,
26798, 17845,
]
# --------------------------------------------------------------------------------------------
# SAGE implementation Tip5 (and Tip4)
# --------------------------------------------------------------------------------------------
from sage.crypto.sbox import SBox
from scipy.linalg import circulant
from random import randint
class Tip5:
def __init__(self, p=2**64 - 2**32 + 1, state_size=16, num_rounds=5, alpha=7, name="TIP", num_split_and_lookup=4, rate=10, capacity=6, digest_length=5, initial_capacity_value=1, R=2**64):
assert(ceil(log(p,2)) == 64)
self.p = p # 0xffffffff00000001 = 2**64 - 2**32 + 1
self.p_orig = 0xffffffff00000001
self.field = GF(self.p)
self.to_field = lambda x : self.field(x)
self.from_field = lambda x : Integer(x)
self.random_element = lambda : self.to_field(randint(0,min(self.p_orig,self.p)-1)) # Make sure that random inputs work for S S-Box
max_state_size, max_num_rounds = 16, 5
assert(state_size <= max_state_size and num_rounds <= max_num_rounds)
self.m = state_size
self.N = num_rounds
self.s = num_split_and_lookup
# Components for nonlinear layer: S
self.lut = SBox([x for x in LOOKUP_TABLE]) # Lookup table defined over GF(2**8+1), elements interpreted as integers in LUT
self.lut_inv = self.lut.inverse()
self.R = self.to_field(R)
self.R_inv = self.R**(-1)
# Components for nonlinear layer: T
assert(gcd(alpha,self.p - 1)==1)
self.alpha = alpha
self.alpha_inv = inverse_mod(self.alpha, self.p - 1)
# Components for linear layer
self.mds_matrix = Matrix(self.field, nrows=self.m, ncols=self.m, entries=circulant(MDS_MATRIX_FIRST_COLUMN[:self.m]))
self.mds_matrix_inv = self.mds_matrix.inverse()
#self.rcons = [vector(self.field, ROUND_CONSTANTS[r*self.m:(r+1)*self.m]) for r in range(self.N)]
self.rcons = Gen_RoundConstant(self.p, self.m, self.N)
# Hash mode specifics
assert(self.m == rate + capacity)
self.r = rate
self.c = capacity
assert(self.m >= digest_length)
self.d = digest_length
self.c_value = self.to_field(initial_capacity_value)
self.name = name
def __str__(self):
result = f"{self.name} over {self.field}\n"
result += f"Rate = {self.r}, Capacity = {self.c}, Digest length = {self.d}, Number of split and look S-Boxes = {self.s}, Alpha = {self.alpha}\nNumber of rounds = {self.N}, Initial capacity value = {self.c_value}, R for Montgomery = {self.R}\n"
return result
# --------------------------------------------------------------------------------
# Call hash function
# --------------------------------------------------------------------------------
def __call__(self, message):
assert(len(message) == self.r) # Only rate part can be chosen, capacity is fixed
input_state = vector(self.field, message + [self.c_value]*self.c) # Append capacity
result = self.eval_with_intermediate_states(input_state)
hash_value = list(result[-1])[:self.d]
return hash_value
def eval_with_intermediate_states(self, input_state, N=None):
if len(input_state) == self.r:
input_state = input_state + [self.c_value]*self.c
input_state = vector(self.field, input_state)
assert(len(input_state) == self.m)
# If no custom round number N is given, use predefined one
if N is None:
N = self.N
result = [input_state]
for r in range(N):
state = result[-1]
state = self.nonlinear_layer(state)
state = self.linear_layer(state, r)
result.append(state)
return result
def eval_inv_with_intermediate_states(self, output_state):
assert(len(output_state) == self.m) # Inversion only possible if output rate and capacity are known
result = [vector(self.field, output_state)]
for r in range(self.N-1, -1, -1):
state = result[-1]
state = self.linear_layer(state, r, inv=True)
state = self.nonlinear_layer(state, inv=True)
result.append(state)
return result
# --------------------------------------------------------------------------------
# Non-linear layer: Substitution S (with composition and decomposition) and T (power map)
# --------------------------------------------------------------------------------
def decompose(self, x):
x = self.from_field(x)
parts = []
for si in [8]*8: # 64bit = 8x8 bits
parts.append(x & (2**si - 1))
x = x >> si # next chunk
return parts[::-1] # parts[0] contains most significant 8 bits
def compose(self, parts):
x = parts[0]
for xi,si in zip(parts[1:], [8]*7): # 64bit = 8bits + 7x8 bits
x = x << si
x += xi
assert(x < self.p)
return self.to_field(x)
def S(self, x, inv=False):
x = self.R * x # Canonical Representation -> Montgomery Form
parts = self.decompose(x)
sub_parts = [self.lut_inv(xi) if inv else self.lut(xi) for xi in parts]
y = self.compose(sub_parts)
y = self.R_inv * y # Montgomery Form -> Canonical Representation
return y
def T(self, x, inv=False):
return x**self.alpha_inv if inv else x**self.alpha
def nonlinear_layer(self, state, inv=False):
sub_state = copy(state)
for i in range(self.m):
if i < self.s:
sub_state[i] = self.S(sub_state[i], inv)
else:
sub_state[i] = self.T(sub_state[i], inv)
return sub_state
# --------------------------------------------------------------------------------
# Linear layer: MDS matrix multiplication and round constant addition
# --------------------------------------------------------------------------------
def multiply_mds_matrix(self, state, inv=False):
return self.mds_matrix_inv * state if inv else self.mds_matrix * state
def add_rcons(self, state, r, inv=False):
#return state - self.rcons.column(r) if inv else state + self.rcons.column(r)
return state - self.rcons[r] if inv else state + self.rcons[r]
def linear_layer(self, state, r, inv=False):
if inv:
state = self.add_rcons(state, r, inv)
state = self.multiply_mds_matrix(state, inv)
else:
state = self.multiply_mds_matrix(state, inv)
state = self.add_rcons(state, r, inv)
return state
# --------------------------------------------------------------------------------------------
# Test vectors created by Rust implementation: hash10_test_vectors
# https://github.com/Neptune-Crypto/twenty-first/blob/master/twenty-first/src/math/tip5.rs
# --------------------------------------------------------------------------------------------
TV_Tip5 = [
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [941080798860502477, 5295886365985465639, 14728839126885177993, 10358449902914633406, 14220746792122877272]],
[[941080798860502477, 5295886365985465639, 14728839126885177993, 10358449902914633406, 14220746792122877272, 0, 0, 0, 0, 0], [15888421881075650037, 8699648354187865464, 6719068786850902915, 16188941274693647820, 4768361305800190493]],
[[941080798860502477, 15888421881075650037, 8699648354187865464, 6719068786850902915, 16188941274693647820, 4768361305800190493, 0, 0, 0, 0], [11494362724359741120, 2984169814429715553, 11021746812971026026, 5102281498552384717, 5023112854146751042]],
[[941080798860502477, 15888421881075650037, 11494362724359741120, 2984169814429715553, 11021746812971026026, 5102281498552384717, 5023112854146751042, 0, 0, 0], [627201255727529993, 2530132417472465719, 15134374672529870482, 10586143339158028166, 13810271029904013559]],
[[941080798860502477, 15888421881075650037, 11494362724359741120, 627201255727529993, 2530132417472465719, 15134374672529870482, 10586143339158028166, 13810271029904013559, 0, 0], [4790238723037855394, 13717377209729127271, 8994982932799814404, 18004412270774820131, 5877166878145340765]],
[[941080798860502477, 15888421881075650037, 11494362724359741120, 627201255727529993, 4790238723037855394, 13717377209729127271, 8994982932799814404, 18004412270774820131, 5877166878145340765, 0], [16959020643814878453, 12118009629857908438, 10239930869937551135, 6889489196156760098, 5774309862903741805]],
[[941080798860502477, 15888421881075650037, 11494362724359741120, 627201255727529993, 4790238723037855394, 16959020643814878453, 12118009629857908438, 10239930869937551135, 6889489196156760098, 5774309862903741805], [10869784347448351760, 1853783032222938415, 6856460589287344822, 17178399545409290325, 7650660984651717733]]
]
# --------------------------------------------------------------------------------
# Tip5
# --------------------------------------------------------------------------------
tip5 = Tip5(name="Tip5")
#print("tip5 = ")
#print(tip5)
# Check test vectors for Tip5
for tv in TV_Tip5:
assert(tip5(tv[0]) == tv[1])
results = tip5.eval_with_intermediate_states(TV_Tip5[0][0] + [tip5.c_value]*tip5.c)
assert(tip5.eval_inv_with_intermediate_states(results[-1])[-1] == results[0])
# --------------------------------------------------------------------------------
# Tip4
# --------------------------------------------------------------------------------
tip4 = Tip5(name="TIP4", rate=12, capacity=4, digest_length=4)
#print("tip4 = ")
#print(tip4)
# --------------------------------------------------------------------------------
# Tip4'
# --------------------------------------------------------------------------------
tip4p = Tip5(name="TIP4p", state_size=12, rate=8, capacity=4, digest_length=4)
#print("tip4p = ")
#print(tip4p)
# --------------------------------------------------------------------------------
# TipToy
# --------------------------------------------------------------------------------
tiptoy = Tip5(name="TIPTOY", p=2**64-0x3b, num_rounds=3, state_size=6, rate=4, capacity=2, digest_length=2, alpha=3, num_split_and_lookup=2, R=1, initial_capacity_value=0)
#print("tiptoy = ")
#print(tiptoy)
# --------------------------------------------------------------------------------
# MiniTipToy (solveable in sage)
# --------------------------------------------------------------------------------
minitiptoy = Tip5(name="TIPTOYMINI", p=2**64-0x3b, num_rounds=3, state_size=3, rate=2, capacity=1, digest_length=1, alpha=3, num_split_and_lookup=1, R=1, initial_capacity_value=0)
#print("minitiptoy = ")
#print(minitiptoy)
# --------------------------------------------------------------------------------
# Tip2 (Tip5 but smaller alpha, halved state size and adapted rate + capacity)
# --------------------------------------------------------------------------------
tip2 = Tip5(name="tip2", p=2**64-0x3b, num_rounds=3, state_size=8, rate=5, capacity=3, digest_length=2, alpha=3, num_split_and_lookup=2, R=1, initial_capacity_value=0)