-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathBaseline.py
147 lines (124 loc) · 6.47 KB
/
Baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import auto_vp.datasets as datasets
from auto_vp.wrapper import BaseWrapper
from auto_vp.utilities import setup_device
from auto_vp.dataprepare import DataPrepare, Data_Scalability
from auto_vp import programs
from auto_vp.training_process import *
from auto_vp.const import CLASS_NUMBER, IMG_SIZE, SOURCE_CLASS_NUM, BATCH_SIZE, NETMEAN, NETSTD
import argparse
import torchvision
import numpy as np
import torch
import random
import torchvision.models as models
import clip
import timm
from torchvision import transforms
import time
def set_seed(seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
if __name__ == '__main__':
p = argparse.ArgumentParser()
p.add_argument(
'--dataset', choices=["CIFAR10", "CIFAR10-C", "CIFAR100", "Melanoma", "SVHN", "GTSRB", "Flowers102", "DTD", "Food101", "EuroSAT", "OxfordIIITPet", "UCF101", "FMoW"], required=True)
p.add_argument('--datapath', type=str, required=True)
p.add_argument('--download', type=int, choices=[0, 1], default=0)
p.add_argument(
'--pretrained', choices=["vgg16_bn", "resnet18", "resnet50", "resnext101_32x8d", "ig_resnext101_32x8d", "vit_b_16", "clip", "clip_large", "swin_t"], default="clip")
p.add_argument('--epoch', type=int, default=200)
p.add_argument('--lr', type=float, default=0.001) # IG: 0.001, SWIN: 0.001 or 0.0001
p.add_argument('--seed', type=int, default=7)
p.add_argument('--scalibility_rio', type=int, choices=[1, 2, 4, 10, 100], default=1)
p.add_argument('--scalibility_mode', choices=["equal", "random"], default="equal")
p.add_argument('--baseline', choices=["LP", "FF", "Scartch", "CLIP_TP", "CLIP_LP"], default="CLIP_LP")
args = p.parse_args()
start_time = time.time()
# set random seed
set_seed(args.seed)
# device setting
device, list_ids = setup_device(1)
print("device: ", list_ids)
# Dataset Setting
channel = 3
img_resize = 224
class_num = CLASS_NUMBER[args.dataset]
random_state = args.seed
# choice: [True, False]. Download the dataset or not.
if(args.download > 0):
download = True
else:
download = False
# Initialize Model
if args.pretrained == "vgg16_bn": # VGG-16 with batch normalization
model = models.vgg16_bn(weights=models.VGG16_BN_Weights.DEFAULT)
elif args.pretrained == "resnet18":
model = models.resnet18(weights=models.ResNet18_Weights.DEFAULT)
elif args.pretrained == "resnet50":
model = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
elif args.pretrained == "resnext101_32x8d":
model = models.resnext101_32x8d(weights=models.ResNeXt101_32X8D_Weights.DEFAULT)
elif args.pretrained == "ig_resnext101_32x8d": # https://paperswithcode.com/model/ig-resnext?variant=ig-resnext101-32x8d
model = timm.create_model('ig_resnext101_32x8d', pretrained=True)
elif args.pretrained == "vit_b_16":
model = models.vit_b_16(weights=models.ViT_B_16_Weights.DEFAULT)
elif args.pretrained == "swin_t":
model = models.swin_t(weights=models.Swin_T_Weights.DEFAULT)
elif args.pretrained == "clip":
model, clip_preprocess = clip.load("ViT-B/32", device=device)
# https://github.com/openai/CLIP/issues/57
for p in model.parameters():
p.data = p.data.float()
if p.grad:
p.grad.data = p.grad.data.float()
elif args.pretrained == "clip_large":
model, clip_preprocess = clip.load("ViT-L/14", device=device)
for p in model.parameters():
p.data = p.data.float()
if p.grad:
p.grad.data = p.grad.data.float()
else:
raise NotImplementedError(f"{args.pretrained} not supported")
preprocess = transforms.Compose([
transforms.Resize((224,224)),
transforms.Lambda(lambda x: x.convert('RGB') if hasattr(x, 'convert') else x),
transforms.ToTensor(),
transforms.Normalize(NETMEAN[args.pretrained], NETSTD[args.pretrained]),
])
if(args.pretrained[0:4] == "clip"):
clip_transform = clip_preprocess
else:
clip_transform = preprocess
# dataloader
trainloader, testloader, class_names, trainset = DataPrepare(dataset_name=args.dataset, dataset_dir=args.datapath, target_size=(
img_resize, img_resize), mean=NETMEAN[args.pretrained], std=NETSTD[args.pretrained], download=download, batch_size=BATCH_SIZE[args.dataset], random_state=random_state, clip_transform=clip_transform)
wild_ds_list = ["Camelyon17", "Iwildcam", "FMoW"]
if args.dataset in wild_ds_list:
wild_dataset = True
else:
wild_dataset = False
if(args.scalibility_rio != 1):
trainloader = Data_Scalability(trainset, args.scalibility_rio, BATCH_SIZE[args.dataset], mode=args.scalibility_mode, random_state=random_state, wild_dataset=wild_dataset)
# Training
best_val_acc = 0.
fname = f"{args.dataset}_{args.baseline}_1_{args.scalibility_rio}.txt"
if(args.pretrained[0:4] != "clip" and args.baseline[0:4] == "CLIP"):
raise Exception(f"{args.pretrained} not supported {args.baseline}")
elif(args.baseline == "LP"):
best_val_acc = LP(fname, model, args.pretrained, class_num, trainloader, testloader, args.epoch, args.lr, device, wild_dataset=wild_dataset)
elif(args.baseline == "FF"):
best_val_acc = Full_Finetune(fname, model, args.pretrained, class_num, trainloader, testloader, args.epoch, args.lr, device, wild_dataset=wild_dataset)
elif(args.baseline == "Scartch"):
model = torchvision.models.resnet18(pretrained=False)
best_val_acc = Full_Finetune(fname, model, args.pretrained, class_num, trainloader, testloader, args.epoch, args.lr, device, wild_dataset=wild_dataset)
elif(args.baseline == "CLIP_TP"):
best_val_acc = CLIP_Pure(model, testloader, class_names, device, wild_dataset=wild_dataset)
elif(args.baseline == "CLIP_LP" and args.pretrained == "clip_large"):
best_val_acc = CLIP_LP(fname, model, trainloader, testloader, class_num, args.epoch, args.lr, device, b_l="l", wild_dataset=wild_dataset)
elif(args.baseline == "CLIP_LP" and args.pretrained == "clip"):
best_val_acc = CLIP_LP(fname, model, trainloader, testloader, class_num, args.epoch, args.lr, device, wild_dataset=wild_dataset)
print("Best Validation Accuracy: ", best_val_acc)
print("Execution Time (minutes): ", time.time() - start_time)