-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathDABA.hpp
288 lines (252 loc) · 8.78 KB
/
DABA.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#ifndef __STLDequeBased_H__
#define __STLDequeBased_H__
#include<deque>
#include"ChunkedArrayQueue.hpp"
#include<iostream>
#include<iterator>
#include<cassert>
#ifdef DEBUG
#define _IFDEBUG(x) x
#else
#define _IFDEBUG(x)
#endif
namespace daba {
template<typename valT, typename aggT>
class __AggT {
public:
valT _val;
aggT _agg;
__AggT() {}
__AggT(valT val_, aggT agg_)
: _val(val_), _agg(agg_) {}
};
template<typename T, bool on> struct AggCache {};
template<typename T> struct AggCache<T, false> {
AggCache(T cv_) {}
T fetch(std::function<T(void)> fallback) {
return fallback();
}
void setCache(std::function<T(void)> th) {}
};
template<typename T> struct AggCache<T, true> {
AggCache(T cv_)
: cache(cv_) {}
T fetch(std::function<T(void)> fallback) {
_IFDEBUG(std::cerr << "serving from cache" << std::endl);
return cache;
}
void setCache(std::function<T(void)> th) { cache=th(); }
T cache;
};
template<typename binOpFunc,
bool toCache=false,
typename queueT=ChunkedArrayQueue<__AggT<typename binOpFunc::Partial, typename binOpFunc::Partial>>>
class Aggregate {
public:
typedef typename binOpFunc::In inT;
typedef typename binOpFunc::Partial aggT;
typedef typename binOpFunc::Out outT;
typedef __AggT<aggT, aggT> AggT;
Aggregate(binOpFunc binOp_, aggT identE_)
: _q(), _binOp(binOp_), _identE(identE_),
_cachedRA(identE_) {
l = _q.begin(), b = _q.begin();
a = _q.begin(), r = _q.begin();
}
size_t size() { return _q.size(); }
void insert(inT v) {
_IFDEBUG(std::cerr << "inserting " << v << std::endl;);
_IFDEBUG(__debugPtrs(););
auto prev_back = _get_back();
aggT lifted = _binOp.lift(v);
auto back = _binOp.combine(prev_back, lifted);
_q.push_back(AggT(lifted, back));
_step();
}
void evict() {
_IFDEBUG(std::cerr << "evicting" << std::endl;);
_q.pop_front();
_step();
}
outT query() {
if (_q.size() > 0) {
aggT alpha = _get_alpha(), back = _get_back();
return _binOp.lower(_binOp.combine(alpha, back));
}
else return _binOp.lower(_identE);
}
outT naive_query() {
aggT accum = _identE;
for (iterT it=_q.begin(); it!=_q.end(); it++){
accum = _binOp.combine(accum, it->_val);
}
return _binOp.lower(accum);
}
private:
typedef queueT dequeT;
typedef typename dequeT::iterator iterT;
dequeT _q;
// pointers into the queue
iterT l,r,a,b;
// the binary operator deck
binOpFunc _binOp;
aggT _identE;
// cache R + A
AggCache<aggT, toCache> _cachedRA;
inline void _step() {
_IFDEBUG(std::cerr << "begins _step::" << std::endl;);
_IFDEBUG(__debugPtrs(););
if (l == b) {
_flip();
_IFDEBUG(std::cerr << "after flip:"
<< "l <-> r: " << std::distance(l, r)
<< ", r <-> a: " << std::distance(r, a)
<< std::endl);
}
_IFDEBUG(__debugPtrs(););
// work if front stuff isn't empty
if (_q.begin() != b) {
_IFDEBUG(__debugPtrs(););
if (a != r) {
// a moves left
assert(r!=a);
_IFDEBUG(std::cerr << "r=!a, a moves left" << std::endl;);
auto prev_delta = _get_delta();
--a;
a->_agg = _binOp.combine(a->_val, prev_delta);
}
// advance l (to the right)
if (l != r) { // l moves by itself until hitting r
_IFDEBUG(std::cerr << "l!=r, advancing l forward" << std::endl;);
// auto gamma = _get_gamma();
// auto delta = _get_delta();
auto ra = _cachedRA.fetch([this]() -> aggT {
return this->_binOp.combine(this->_get_gamma(), this->_get_delta());
});
l->_agg = _binOp.combine(l->_agg, ra);
assert(l!=_q.end());
++l;
} else { // moves together with r (and perhaps a)
_IFDEBUG(std::cerr << "l==r, advancing l, free riding" << std::endl;);
assert(l!=_q.end());
++l; ++r; ++a;
assert(l==r && a==l);
}
}
#ifdef CHECK_INVARIANTS
assert_ps_invariants();
#endif
_IFDEBUG(__debugPtrs();)
}
int iterLoc(iterT t) {
int loc = 0;
for (iterT it=_q.begin();it!=t;it++, loc++) {
if (it==_q.end()) return -1;
}
return loc;
}
void __debugPtrs(){
std::cerr << "[l="<< iterLoc(l) <<
", r="<< iterLoc(r) <<
", a="<< iterLoc(a) <<
", b="<< iterLoc(b) <<
", sz="<< _q.size() << "]" << std::endl;
for (iterT it=_q.begin(); it!=_q.end();it++) {
std::cerr << "(" << it->_val << ", " << it->_agg << ")";
}
std::cerr << std::endl;
}
aggT partial_sum(iterT p, iterT q) {
aggT accum = _identE;
for (iterT it=p; it!=q; it++){
accum = _binOp.combine(accum, it->_val);
}
return accum;
}
void assert_ps_invariants() {
for (iterT it=_q.begin(); it!=_q.end();it++) {
if (a==it) { std::cerr << "|a|"; }
if (b==it) { std::cerr << "|b|"; }
if (l==it) { std::cerr << "|l|"; }
if (r==it) { std::cerr << "|r|"; }
std::cerr << it->_val << " ";
}
if (a==_q.end()) { std::cerr << "|a|"; }
if (b==_q.end()) { std::cerr << "|b|"; }
if (l==_q.end()) { std::cerr << "|l|"; }
if (r==_q.end()) { std::cerr << "|r|"; }
std::cerr << std::endl;
assert(_q.begin()<=l);
assert(l<=r);
assert(r<=a);
assert(a<=b);
assert(b<=_q.end());
for (iterT it=_q.begin();it != l; it++) {
std::cerr << "=a> (" << it->_val << ", " << it->_agg << ")" << std::endl;
std::cerr << "+a> (" << partial_sum(it, b) << std::endl;
assert(it->_agg == partial_sum(it, b));
}
for (iterT it=l;it != r; it++) {
std::cerr << "=b> (" << it->_val << ", " << it->_agg << ")" << std::endl;
std::cerr << "+b> (" << partial_sum(it, r) << std::endl;
assert(it->_agg == partial_sum(it, r));
}
for (iterT it=r;it != a; it++) {
std::cerr << "=c> (" << it->_val << ", " << it->_agg << ")" << std::endl;
std::cerr << "+c> (" << partial_sum(r, it+1) << std::endl;
assert(it->_agg == partial_sum(r, it+1));
}
for (iterT it=a;it != b; it++) {
std::cerr << "=d> (" << it->_val << ", " << it->_agg << ")" << std::endl;
std::cerr << "+d> (" << partial_sum(it, b) << std::endl;
assert(it->_agg == partial_sum(it, b));
}
for (iterT it=b;it != _q.end(); it++) {
std::cerr << "=B> (" << it->_val << ", " << it->_agg << ")" << std::endl;
std::cerr << "+B> (" << partial_sum(b, it+1) << std::endl;
assert(it->_agg == partial_sum(b, it+1));
}
// size asserts
auto sizeOfUnprocessed = std::distance(l, b);
auto sizeOfFront = std::distance(_q.begin(), b);
auto sizeOfBack = std::distance(b, _q.end());
std::cerr << "size: unproc=" << sizeOfUnprocessed <<
", front="<< sizeOfFront <<
", back="<< sizeOfBack << std::endl;
assert(_q.size()==0 || sizeOfUnprocessed + 1 == (sizeOfFront - sizeOfBack));
assert(sizeOfBack <= sizeOfFront);
assert(std::distance(l, r) == std::distance(r, a));
std::cerr << "l <-> r: " << std::distance(l, r)
<< ", r <-> a: " << std::distance(r, a)
<< ", a <-> b: " << std::distance(a, b)
<< std::endl;
}
inline bool is_back_empty() { return b == _q.end(); }
inline bool is_front_empty() { return b == _q.begin(); }
inline bool is_delta_empty() { return a == b; }
inline bool is_gamma_empty() { return a == r; }
inline aggT _get_back() { return is_back_empty() ? _identE : _q.back()._agg; }
inline aggT _get_alpha() { return is_front_empty() ? _identE : _q.front()._agg; }
inline aggT _get_delta() { return is_delta_empty() ? _identE : a->_agg; }
inline aggT _get_gamma() { return is_gamma_empty() ? _identE : (a-1)->_agg; }
inline void _flip() {
_IFDEBUG(std::cerr << "flipping" << std::endl;);
l = _q.begin(); r = b;
a = _q.end(); b = _q.end();
_cachedRA.setCache([this]()-> aggT { return this->_get_gamma(); });
}
};
template <bool caching, class BinaryFunction, class T>
Aggregate<BinaryFunction, caching> make_aggregate(BinaryFunction f, T elem) {
return Aggregate<BinaryFunction, caching>(f, elem);
}
template <typename BinaryFunction, bool caching>
struct MakeAggregate {
template <typename T>
Aggregate<BinaryFunction, caching> operator()(T elem) {
BinaryFunction f;
return make_aggregate<caching>(f, elem);
}
};
}
#endif