-
Notifications
You must be signed in to change notification settings - Fork 144
/
Copy pathgrounded_sam2_dinox_demo.py
245 lines (205 loc) · 7.55 KB
/
grounded_sam2_dinox_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# dds cloudapi for Grounding DINO 1.5
from dds_cloudapi_sdk import Config
from dds_cloudapi_sdk import Client
from dds_cloudapi_sdk.tasks.dinox import DinoxTask
from dds_cloudapi_sdk.tasks.types import DetectionTarget
from dds_cloudapi_sdk import TextPrompt
import os
import cv2
import json
import torch
import tempfile
import numpy as np
import supervision as sv
import pycocotools.mask as mask_util
from pathlib import Path
from PIL import Image
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
"""
Hyper parameters
"""
API_TOKEN = "Your API token"
TEXT_PROMPT = "car . building ."
IMG_PATH = "notebooks/images/cars.jpg"
SAM2_CHECKPOINT = "./checkpoints/sam2.1_hiera_large.pt"
SAM2_MODEL_CONFIG = "configs/sam2.1/sam2.1_hiera_l.yaml"
BOX_THRESHOLD = 0.2
WITH_SLICE_INFERENCE = False
SLICE_WH = (480, 480)
OVERLAP_RATIO = (0.2, 0.2)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
OUTPUT_DIR = Path("outputs/grounded_sam2_dinox_demo")
DUMP_JSON_RESULTS = True
# create output directory
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
"""
Prompt DINO-X with Text for Box Prompt Generation with Cloud API
"""
# Step 1: initialize the config
token = API_TOKEN
config = Config(token)
# Step 2: initialize the client
client = Client(config)
# Step 3: run the task by DetectionTask class
# image_url = "https://algosplt.oss-cn-shenzhen.aliyuncs.com/test_files/tasks/detection/iron_man.jpg"
# if you are processing local image file, upload them to DDS server to get the image url
classes = [x.strip().lower() for x in TEXT_PROMPT.split('.') if x]
class_name_to_id = {name: id for id, name in enumerate(classes)}
class_id_to_name = {id: name for name, id in class_name_to_id.items()}
if WITH_SLICE_INFERENCE:
def callback(image_slice: np.ndarray) -> sv.Detections:
print("Inference on image slice")
# save the img as temp img file for GD-1.5 API usage
with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as tmpfile:
temp_filename = tmpfile.name
cv2.imwrite(temp_filename, image_slice)
image_url = client.upload_file(temp_filename)
task = DinoxTask(
image_url=image_url,
prompts=[TextPrompt(text=TEXT_PROMPT)],
bbox_threshold=0.25,
targets=[DetectionTarget.BBox],
)
client.run_task(task)
result = task.result
# detele the tempfile
os.remove(temp_filename)
input_boxes = []
confidences = []
class_ids = []
objects = result.objects
for idx, obj in enumerate(objects):
input_boxes.append(obj.bbox)
confidences.append(obj.score)
cls_name = obj.category.lower().strip()
class_ids.append(class_name_to_id[cls_name])
# ensure input_boxes with shape (_, 4)
input_boxes = np.array(input_boxes).reshape(-1, 4)
class_ids = np.array(class_ids)
confidences = np.array(confidences)
return sv.Detections(xyxy=input_boxes, confidence=confidences, class_id=class_ids)
slicer = sv.InferenceSlicer(
callback=callback,
slice_wh=SLICE_WH,
overlap_ratio_wh=OVERLAP_RATIO,
iou_threshold=0.5,
overlap_filter_strategy=sv.OverlapFilter.NON_MAX_SUPPRESSION
)
detections = slicer(cv2.imread(IMG_PATH))
class_names = [class_id_to_name[id] for id in detections.class_id]
confidences = detections.confidence
class_ids = detections.class_id
input_boxes = detections.xyxy
else:
image_url = client.upload_file(IMG_PATH)
task = DinoxTask(
image_url=image_url,
prompts=[TextPrompt(text=TEXT_PROMPT)],
bbox_threshold=0.25,
targets=[DetectionTarget.BBox],
)
client.run_task(task)
result = task.result
objects = result.objects # the list of detected objects
input_boxes = []
confidences = []
class_names = []
class_ids = []
for idx, obj in enumerate(objects):
input_boxes.append(obj.bbox)
confidences.append(obj.score)
cls_name = obj.category.lower().strip()
class_names.append(cls_name)
class_ids.append(class_name_to_id[cls_name])
input_boxes = np.array(input_boxes)
class_ids = np.array(class_ids)
"""
Init SAM 2 Model and Predict Mask with Box Prompt
"""
# environment settings
# use bfloat16
torch.autocast(device_type=DEVICE, dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# build SAM2 image predictor
sam2_checkpoint = SAM2_CHECKPOINT
model_cfg = SAM2_MODEL_CONFIG
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device=DEVICE)
sam2_predictor = SAM2ImagePredictor(sam2_model)
image = Image.open(IMG_PATH)
sam2_predictor.set_image(np.array(image.convert("RGB")))
masks, scores, logits = sam2_predictor.predict(
point_coords=None,
point_labels=None,
box=input_boxes,
multimask_output=False,
)
"""
Post-process the output of the model to get the masks, scores, and logits for visualization
"""
# convert the shape to (n, H, W)
if masks.ndim == 4:
masks = masks.squeeze(1)
"""
Visualization the Predict Results
"""
labels = [
f"{class_name} {confidence:.2f}"
for class_name, confidence
in zip(class_names, confidences)
]
"""
Visualize image with supervision useful API
"""
img = cv2.imread(IMG_PATH)
detections = sv.Detections(
xyxy=input_boxes, # (n, 4)
mask=masks.astype(bool), # (n, h, w)
class_id=class_ids
)
box_annotator = sv.BoxAnnotator()
annotated_frame = box_annotator.annotate(scene=img.copy(), detections=detections)
label_annotator = sv.LabelAnnotator()
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
cv2.imwrite(os.path.join(OUTPUT_DIR, "dinox_annotated_image.jpg"), annotated_frame)
mask_annotator = sv.MaskAnnotator()
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
cv2.imwrite(os.path.join(OUTPUT_DIR, "dinox_sam2_annotated_image_with_mask.jpg"), annotated_frame)
print(f'Annotated image has already been saved as to "{OUTPUT_DIR}"')
"""
Dump the results in standard format and save as json files
"""
def single_mask_to_rle(mask):
rle = mask_util.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0]
rle["counts"] = rle["counts"].decode("utf-8")
return rle
if DUMP_JSON_RESULTS:
print("Start dumping the annotation...")
# convert mask into rle format
mask_rles = [single_mask_to_rle(mask) for mask in masks]
input_boxes = input_boxes.tolist()
scores = scores.tolist()
# FIXME: class_names should be a list of strings without spaces
class_names = [class_name.strip() for class_name in class_names]
# save the results in standard format
results = {
"image_path": IMG_PATH,
"annotations" : [
{
"class_name": class_name,
"bbox": box,
"segmentation": mask_rle,
"score": score,
}
for class_name, box, mask_rle, score in zip(class_names, input_boxes, mask_rles, scores)
],
"box_format": "xyxy",
"img_width": image.width,
"img_height": image.height,
}
with open(os.path.join(OUTPUT_DIR, "grounded_sam2_dinox_image_demo_results.json"), "w") as f:
json.dump(results, f, indent=4)
print(f'Annotation has already been saved to "{OUTPUT_DIR}"')