-
Notifications
You must be signed in to change notification settings - Fork 144
/
Copy pathgrounded_sam2_florence2_autolabel_pipeline.py
198 lines (162 loc) · 7.08 KB
/
grounded_sam2_florence2_autolabel_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import cv2
import torch
import argparse
import numpy as np
import supervision as sv
from PIL import Image
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
from transformers import AutoProcessor, AutoModelForCausalLM
from utils.supervision_utils import CUSTOM_COLOR_MAP
"""
Define Some Hyperparam
"""
TASK_PROMPT = {
"caption": "<CAPTION>",
"detailed_caption": "<DETAILED_CAPTION>",
"more_detailed_caption": "<MORE_DETAILED_CAPTION>",
"object_detection": "<OD>",
"dense_region_caption": "<DENSE_REGION_CAPTION>",
"region_proposal": "<REGION_PROPOSAL>",
"phrase_grounding": "<CAPTION_TO_PHRASE_GROUNDING>",
"referring_expression_segmentation": "<REFERRING_EXPRESSION_SEGMENTATION>",
"region_to_segmentation": "<REGION_TO_SEGMENTATION>",
"open_vocabulary_detection": "<OPEN_VOCABULARY_DETECTION>",
"region_to_category": "<REGION_TO_CATEGORY>",
"region_to_description": "<REGION_TO_DESCRIPTION>",
"ocr": "<OCR>",
"ocr_with_region": "<OCR_WITH_REGION>",
}
OUTPUT_DIR = "./outputs"
if not os.path.exists(OUTPUT_DIR):
os.makedirs(OUTPUT_DIR, exist_ok=True)
"""
Init Florence-2 and SAM 2 Model
"""
FLORENCE2_MODEL_ID = "microsoft/Florence-2-large"
SAM2_CHECKPOINT = "./checkpoints/sam2_hiera_large.pt"
SAM2_CONFIG = "sam2_hiera_l.yaml"
# environment settings
# use bfloat16
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# build florence-2
florence2_model = AutoModelForCausalLM.from_pretrained(FLORENCE2_MODEL_ID, trust_remote_code=True, torch_dtype='auto').eval().to(device)
florence2_processor = AutoProcessor.from_pretrained(FLORENCE2_MODEL_ID, trust_remote_code=True)
# build sam 2
sam2_model = build_sam2(SAM2_CONFIG, SAM2_CHECKPOINT, device=device)
sam2_predictor = SAM2ImagePredictor(sam2_model)
def run_florence2(task_prompt, text_input, model, processor, image):
assert model is not None, "You should pass the init florence-2 model here"
assert processor is not None, "You should set florence-2 processor here"
device = model.device
if text_input is None:
prompt = task_prompt
else:
prompt = task_prompt + text_input
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch.float16)
generated_ids = model.generate(
input_ids=inputs["input_ids"].to(device),
pixel_values=inputs["pixel_values"].to(device),
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text,
task=task_prompt,
image_size=(image.width, image.height)
)
return parsed_answer
"""
We try to support a series of cascaded auto-labelling pipelines with Florence-2 and SAM 2
"""
"""
Auto-Labelling Pipeline 1: Caption/Detailed Caption/More Detailed Caption + Phrase Grounding + Segmentation
"""
def caption_phrase_grounding_and_segmentation(
florence2_model,
florence2_processor,
sam2_predictor,
image_path,
caption_task_prompt='<CAPTION>',
output_dir=OUTPUT_DIR
):
assert caption_task_prompt in ["<CAPTION>", "<DETAILED_CAPTION>", "<MORE_DETAILED_CAPTION>"]
image = Image.open(image_path).convert("RGB")
# image caption
caption_results = run_florence2(caption_task_prompt, None, florence2_model, florence2_processor, image)
text_input = caption_results[caption_task_prompt]
print(f'Image caption for "{image_path}": ', text_input)
# phrase grounding
grounding_results = run_florence2('<CAPTION_TO_PHRASE_GROUNDING>', text_input, florence2_model, florence2_processor, image)
grounding_results = grounding_results['<CAPTION_TO_PHRASE_GROUNDING>']
# parse florence-2 detection results
input_boxes = np.array(grounding_results["bboxes"])
class_names = grounding_results["labels"]
class_ids = np.array(list(range(len(class_names))))
# predict mask with SAM 2
sam2_predictor.set_image(np.array(image))
masks, scores, logits = sam2_predictor.predict(
point_coords=None,
point_labels=None,
box=input_boxes,
multimask_output=False,
)
if masks.ndim == 4:
masks = masks.squeeze(1)
# specify labels
labels = [
f"{class_name}" for class_name in class_names
]
# visualization results
img = cv2.imread(image_path)
detections = sv.Detections(
xyxy=input_boxes,
mask=masks.astype(bool),
class_id=class_ids
)
box_annotator = sv.BoxAnnotator()
annotated_frame = box_annotator.annotate(scene=img.copy(), detections=detections)
label_annotator = sv.LabelAnnotator()
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
cv2.imwrite(os.path.join(output_dir, "grounded_sam2_florence2_auto_labelling.jpg"), annotated_frame)
mask_annotator = sv.MaskAnnotator()
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
cv2.imwrite(os.path.join(output_dir, "grounded_sam2_florence2_auto_labelling_with_mask.jpg"), annotated_frame)
print(f'Successfully save annotated image to "{output_dir}"')
if __name__ == "__main__":
parser = argparse.ArgumentParser("Grounded SAM 2 Florence-2 Demos", add_help=True)
parser.add_argument("--image_path", type=str, default="./notebooks/images/cars.jpg", required=True, help="path to image file")
parser.add_argument("--pipeline", type=str, default="caption_to_phrase_grounding", required=True, help="pipeline to use")
parser.add_argument("--caption_type", type=str, default="caption", required=False, help="granularity of caption")
args = parser.parse_args()
CAPTION_TO_TASK_PROMPT = {
"caption": "<CAPTION>",
"detailed_caption": "<DETAILED_CAPTION>",
"more_detailed_caption": "<MORE_DETAILED_CAPTION>"
}
IMAGE_PATH = args.image_path
PIPELINE = args.pipeline
CAPTION_TYPE = args.caption_type
assert CAPTION_TYPE in ["caption", "detailed_caption", "more_detailed_caption"]
print(f"Running pipeline: {PIPELINE} now.")
if PIPELINE == "caption_to_phrase_grounding":
# pipeline-1: caption + phrase grounding + segmentation
caption_phrase_grounding_and_segmentation(
florence2_model=florence2_model,
florence2_processor=florence2_processor,
sam2_predictor=sam2_predictor,
caption_task_prompt=CAPTION_TO_TASK_PROMPT[CAPTION_TYPE],
image_path=IMAGE_PATH
)
else:
raise NotImplementedError(f"Pipeline: {args.pipeline} is not implemented at this time")