-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathgrounded_sam_multi_gpu_demo.py
265 lines (224 loc) · 10.5 KB
/
grounded_sam_multi_gpu_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import argparse
import os
import sys
import time
import torch
import numpy as np
import json
from PIL import Image
from concurrent.futures import ThreadPoolExecutor
sys.path.append(os.path.join(os.getcwd(), "GroundingDINO"))
sys.path.append(os.path.join(os.getcwd(), "segment_anything"))
# Grounding DINO imports
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
# Segment Anything imports
from segment_anything import sam_model_registry, sam_hq_model_registry, SamPredictor
import cv2
import matplotlib.pyplot as plt
def load_image(image_path):
image_pil = Image.open(image_path).convert("RGB")
transform = T.Compose([
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
image, _ = transform(image_pil, None)
return image_pil, image
def load_model(model_config_path, model_checkpoint_path, device):
print("Loading model from...........", device)
args = SLConfig.fromfile(model_config_path)
args.device = device
model = build_model(args)
# Load the model checkpoint onto the specific GPU
checkpoint = torch.load(model_checkpoint_path, map_location=device)
model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
model.eval()
model.to(device)
return model
def get_grounding_output(model, image, caption, box_threshold, text_threshold, device="cpu"):
caption = caption.lower().strip()
if not caption.endswith("."):
caption += "."
model.to(device)
image = image.to(device)
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].sigmoid()[0] # Keep it on the device
boxes = outputs["pred_boxes"][0] # Keep it on the device
filt_mask = logits.max(dim=1)[0] > box_threshold
logits_filt = logits[filt_mask]
boxes_filt = boxes[filt_mask]
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
pred_phrases = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
return boxes_filt, pred_phrases
def process_image(image_path, model, predictor, output_dir, text_prompt, box_threshold, text_threshold, device):
# Load the image and move to GPU
image_pil, image = load_image(image_path)
# image_pil.save(os.path.join(output_dir, f"raw_image_{os.path.basename(image_path)}.jpg"))
# Run GroundingDINO model to get bounding boxes and labels
boxes_filt, pred_phrases = get_grounding_output(
model, image, text_prompt, box_threshold, text_threshold, device=device
)
# Load SAM model onto GPU
image_cv = cv2.imread(image_path)
image_cv = cv2.cvtColor(image_cv, cv2.COLOR_BGR2RGB)
predictor.set_image(image_cv)
# Convert boxes to original image size
size = image_pil.size
H, W = size[1], size[0]
for i in range(boxes_filt.size(0)):
boxes_filt[i] = boxes_filt[i] * torch.tensor([W, H, W, H], device=device)
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
boxes_filt[i][2:] += boxes_filt[i][:2]
# Transform boxes to be compatible with SAM
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image_cv.shape[:2]).to(device)
# Get masks using SAM
masks, _, _ = predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes.to(device),
multimask_output=False,
)
# Visualization and saving
plt.figure(figsize=(10, 10))
plt.imshow(image_cv)
# for mask in masks:
# show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
for box, label in zip(boxes_filt, pred_phrases):
show_box(box.cpu().numpy(), plt.gca(), label)
image_base_name = os.path.basename(image_path).split('.')[0]
plt.axis('off')
plt.savefig(
os.path.join(output_dir, f"grounded_sam_output_{image_base_name}.jpg"),
bbox_inches="tight", dpi=300, pad_inches=0.0
)
plt.close()
save_mask_data(output_dir, masks, boxes_filt, pred_phrases, image_base_name)
# Clear GPU memory
del image, transformed_boxes, masks # model, sam
# torch.cuda.empty_cache()
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
# print("mask.shape:", mask.shape)
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax, label):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
ax.text(x0, y0, label)
def save_mask_data(output_dir, mask_list, box_list, label_list, image_base_name=''):
value = 0 # 0 for background
mask_img = torch.zeros(mask_list.shape[-2:], device=mask_list.device)
for idx, mask in enumerate(mask_list):
mask_img[mask[0] == True] = value + idx + 1
plt.figure(figsize=(10, 10))
plt.imshow(mask_img.cpu().numpy())
plt.axis('off')
plt.savefig(os.path.join(output_dir, f'{image_base_name}.jpg'), bbox_inches="tight", dpi=300, pad_inches=0.0)
plt.close()
json_data = [{
'value': value,
'label': 'background'
}]
for label, box in zip(label_list, box_list):
value += 1
name, logit = label.split('(')
logit = logit[:-1] # the last is ')'
json_data.append({
'value': value,
'label': name,
'logit': float(logit),
'box': box.cpu().numpy().tolist(),
})
with open(os.path.join(output_dir, f'{image_base_name}.json'), 'w') as f:
json.dump(json_data, f)
if __name__ == "__main__":
parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True)
parser.add_argument("--config", type=str, required=True, help="path to config file")
parser.add_argument("--grounded_checkpoint", type=str, required=True, help="path to checkpoint file")
parser.add_argument("--sam_version", type=str, default="vit_h", required=False, help="SAM ViT version: vit_b / vit_l / vit_h")
parser.add_argument("--sam_checkpoint", type=str, required=False, help="path to sam checkpoint file")
parser.add_argument("--sam_hq_checkpoint", type=str, default=None, help="path to sam-hq checkpoint file")
parser.add_argument("--use_sam_hq", action="store_true", help="using sam-hq for prediction")
parser.add_argument("--input_path", type=str, required=True, help="path to directory containing image files")
parser.add_argument("--text_prompt", type=str, required=True, help="text prompt")
parser.add_argument("--output_dir", "-o", type=str, default="outputs", required=True, help="output directory")
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
parser.add_argument("--device", type=str, default="cuda", help="device to run the inference on, e.g., 'cuda' or 'cuda:0'")
args = parser.parse_args()
torch.backends.cudnn.enabled = False
torch.backends.cudnn.benchmark = True
start_time = time.time()
# Determine if we are using a single GPU or all available GPUs
if args.device == "cuda":
if torch.cuda.device_count() > 1:
device_list = [torch.device(f"cuda:{i}") for i in range(torch.cuda.device_count())] # Use all GPUs
else:
device_list = [torch.device("cuda:0")] # Default to first GPU
else:
device_list = [torch.device(args.device)]
print("device_list:", device_list)
# Get list of images
image_paths = [os.path.join(args.input_path, img) for img in os.listdir(args.input_path) if img.endswith(('.png', '.jpg', '.jpeg'))]
# Split images among available GPUs
image_batches = np.array_split(image_paths, len(device_list))
print("Processing images:", image_batches)
# Function to process a batch of images on the specified device
def process_batch(batch_images, model_config, model_checkpoint, sam_version, sam_checkpoint, sam_hq_checkpoint, use_sam_hq, device, output_dir):
# Load model onto GPU
torch.cuda.set_device(device)
model = load_model(model_config, model_checkpoint, device)
# Load SAM model onto GPU
if use_sam_hq:
sam = sam_hq_model_registry[sam_version](checkpoint=sam_hq_checkpoint).to(device)
else:
sam = sam_model_registry[sam_version](checkpoint=sam_checkpoint).to(device)
# Move model to the correct device
device = torch.device(device)
model.to(device)
sam.to(device)
predictor = SamPredictor(sam)
for image_path in batch_images:
# Process each image
print("Processing image:", image_path)
process_image(
image_path=image_path,
model=model,
predictor=predictor,
output_dir=output_dir,
text_prompt=args.text_prompt,
box_threshold=args.box_threshold,
text_threshold=args.text_threshold,
device=device
)
print("Image processing complete {}".format(image_path))
# Clear GPU memory after processing the batch
# del model, sam
torch.cuda.empty_cache()
# Use ThreadPoolExecutor to parallelize the processing across GPUs
with ThreadPoolExecutor(max_workers=len(device_list)*2) as executor:
futures = []
for i, device in enumerate(device_list):
print(f"Processing images on device {device}")
print("Image batches for each GPU:", len(image_batches[i]))
futures.append(executor.submit(
process_batch, image_batches[i], args.config, args.grounded_checkpoint, args.sam_version, args.sam_checkpoint, args.sam_hq_checkpoint, args.use_sam_hq, device, args.output_dir
))
# Wait for all threads to complete
for future in futures:
future.result()
print("Processing complete. Results saved to the output directory.")
print(f"Total time taken: {time.time() - start_time:.2f} seconds")