-
Notifications
You must be signed in to change notification settings - Fork 155
/
Copy pathgradio_demo.py
448 lines (409 loc) · 15.1 KB
/
gradio_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import argparse
import json
import random
from typing import Dict, List
import gradio as gr
import numpy as np
from gradio_image_prompter import ImagePrompter
from PIL import Image, ImageDraw, ImageFont
from trex import TRex2APIWrapper
def arg_parse():
parser = argparse.ArgumentParser(description="Gradio Demo for T-Rex2")
parser.add_argument(
"--trex2_api_token",
type=str,
help="API token for T-Rex2",
)
parser.add_argument("--sam_type", type=str, default="vit_l", help="SAM model type")
parser.add_argument(
"--sam_checkpoint_path", type=str, help="path to checkpoint file"
)
args = parser.parse_args()
return args
def plot_boxes_to_image(
image_pil: Image,
tgt: Dict,
return_point: bool = False,
point_width: float = 1.0,
return_score=True,
) -> Image:
"""Plot bounding boxes and labels on an image.
Args:
image_pil (PIL.Image): The input image as a PIL Image object.
tgt (Dict[str, Union[torch.Tensor, List[torch.Tensor]]]): The target dictionary containing
the bounding boxes and labels. The keys are:
- scores: A tuple containing the height and width of the image.
- boxes: A list of normalized bounding boxes as a list of shape (N, 4), in
(x_center, y_center, width, height) format.
- labels: A list of string labels for each bounding box.
return_point (bool): Draw center point instead of bounding box. Defaults to False.
Returns:
Union[PIL.Image, PIL.Image]: A tuple containing the input image and ploted image.
"""
# Get the bounding boxes and labels from the target dictionary
boxes = tgt["boxes"]
scores = tgt["scores"]
# Create a PIL ImageDraw object to draw on the input image
draw = ImageDraw.Draw(image_pil)
# Create a new binary mask image with the same size as the input image
mask = Image.new("L", image_pil.size, 0)
# Create a PIL ImageDraw object to draw on the mask image
mask_draw = ImageDraw.Draw(mask)
# Draw boxes and masks for each box and label in the target dictionary
for box, score in zip(boxes, scores):
# Convert the box coordinates from 0..1 to 0..W, 0..H
color = tuple(np.random.randint(0, 255, size=3).tolist())
# Extract the box coordinates
x0, y0, x1, y1 = box
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
if return_point:
ceter_x = int((x0 + x1) / 2)
ceter_y = int((y0 + y1) / 2)
# Draw the center point on the input image
draw.ellipse(
(
ceter_x - point_width,
ceter_y - point_width,
ceter_x + point_width,
ceter_y + point_width,
),
fill=color,
width=point_width,
)
else:
# Draw the box outline on the input image
draw.rectangle([x0, y0, x1, y1], outline=color, width=int(point_width))
# Draw the label text on the input image
if return_score:
text = f"{score:.2f}"
else:
text = f""
font = ImageFont.load_default()
if hasattr(font, "getbbox"):
bbox = draw.textbbox((x0, y0), text, font)
else:
w, h = draw.textsize(text, font)
bbox = (x0, y0, w + x0, y0 + h)
if not return_point:
draw.rectangle(bbox, fill=color)
draw.text((x0, y0), text, fill="white")
# Draw the box on the mask image
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6)
return image_pil, mask
def multi_mask2one_mask(masks):
_, _, h, w = masks.shape
for i, mask in enumerate(masks):
mask_image = mask.reshape(h, w, 1)
whole_mask = mask_image if i == 0 else whole_mask + mask_image
whole_mask = np.where(whole_mask == False, 0, 255)
return whole_mask
def numpy2PIL(numpy_image):
out = Image.fromarray(numpy_image.astype(np.uint8))
return out
def draw_mask(mask, draw, random_color=True):
if random_color:
color = (
random.randint(0, 255),
random.randint(0, 255),
random.randint(0, 255),
153,
)
else:
color = (30, 144, 255, 153)
nonzero_coords = np.transpose(np.nonzero(mask))
for coord in nonzero_coords:
draw.point(coord[::-1], fill=color)
def build_annotation(boxes, mask):
annotations = []
mask_coor = np.transpose(np.nonzero(mask)).astype(np.int32).tolist()
for i, box in enumerate(boxes):
# convert box from xyxy to xywh
box = box.tolist()
box[2] -= box[0]
box[3] -= box[1]
box = np.array(box).astype(np.int32).tolist()
area = box[2] * box[3]
annotation = {
"id": i,
"image_id": 0,
"category_id": 0,
"segmentation": [],
"mask": mask_coor,
"area": area,
"bbox": box,
"iscrowd": 0,
}
annotations.append(annotation)
return json.dumps(dict(annotation=annotations))
def clean_input():
return [None] * 9
def parse_visual_prompt(points: List):
boxes = []
pos_points = []
neg_points = []
for point in points:
if point[2] == 2 and point[-1] == 3:
x1, y1, _, x2, y2, _ = point
boxes.append([x1, y1, x2, y2])
elif point[2] == 1 and point[-1] == 4:
x, y, _, _, _, _ = point
pos_points.append([x, y])
elif point[2] == 0 and point[-1] == 4:
x, y, _, _, _, _ = point
neg_points.append([x, y])
return boxes, pos_points, neg_points
def pack_model_input_interactive(interactive_input):
ref_image = interactive_input["image"]
ref_visual_prompt = interactive_input["points"]
boxes, pos_points, neg_points = parse_visual_prompt(ref_visual_prompt)
# boxes and points can not show at the same time
if len(boxes) > 0 and len(pos_points) > 0:
raise gr.Error("You can't draw both box and point at the same time")
if len(boxes) > 0:
prompts = {
"prompt_image": ref_image,
"type": "rect",
"prompts": [{"category_id": 1, "rects": boxes}],
}
else:
prompts = {
"prompt_image": ref_image,
"type": "point",
"prompts": [{"category_id": 1, "points": pos_points}],
}
return prompts
def pack_model_input_generic(generic_vp_dict):
prompts = []
for k, v in generic_vp_dict.items():
if v is None:
continue
ref_image = v["image"]
ref_visual_prompt = v["points"]
boxes, pos_points, _ = parse_visual_prompt(ref_visual_prompt)
# boxes and points can not show at the same time
if len(boxes) > 0 and len(pos_points) > 0:
raise gr.Error("You can't draw both box and point at the same time")
if len(boxes) > 0:
target = dict(prompt_image=ref_image, rects=boxes)
else:
target = dict(prompt_image=ref_image, points=pos_points)
prompts.append(target)
return prompts
def trex2_postprocess(
target_image,
trex2_results,
visual_threshold,
return_point,
point_width,
return_score,
):
if isinstance(trex2_results, dict):
trex2_results = [trex2_results]
# filter based on visual threshold
scores = np.array(trex2_results[0]["scores"])
boxes = np.array(trex2_results[0]["boxes"])
labels = np.array(trex2_results[0]["labels"])
filter_mask = scores > float(visual_threshold)
boxes = boxes[filter_mask]
labels = labels[filter_mask]
scores = scores[filter_mask]
trex2_results[0]["boxes"] = boxes
trex2_results[0]["labels"] = labels
trex2_results[0]["scores"] = scores
target_image = Image.fromarray(target_image)
image_with_box = plot_boxes_to_image(
target_image, trex2_results[0], return_point, point_width, return_score
)[0]
visualization = np.array(image_with_box)
mask = None
return visualization, len(boxes), build_annotation(boxes, mask)
def inference(
target_image,
interactive_input,
generic_vp1,
generic_vp2,
generic_vp3,
generic_vp4,
generic_vp5,
generic_vp6,
generic_vp7,
generic_vp8,
visual_threshold,
return_point,
point_width,
return_score,
):
generic_vp_dict = {
"1": generic_vp1,
"2": generic_vp2,
"3": generic_vp3,
"4": generic_vp4,
"5": generic_vp5,
"6": generic_vp6,
"7": generic_vp7,
"8": generic_vp8,
}
if target_image is None:
gr.Error("Please provide a target image")
# tell if generic visual prompt is empty
generic_is_empty = True
for _, v in generic_vp_dict.items():
if v is not None:
generic_is_empty = False
break
# We support:
# 1. interactive visual prompt
# 2. generic visual prompt
if interactive_input is not None and generic_is_empty:
prompts = pack_model_input_interactive(interactive_input)
trex2_results = trex2.interactve_inference([prompts])
elif interactive_input is None and not generic_is_empty:
prompts = pack_model_input_generic(generic_vp_dict)
trex2_results = trex2.generic_inference(target_image, prompts)
else:
raise gr.Error(
"You should provide either interactive visual prompt or generic visual prompt"
)
visualization, num_count, coco_anno = trex2_postprocess(
target_image,
trex2_results,
visual_threshold,
return_point,
point_width,
return_score,
)
# interactive only inference
return visualization, num_count, coco_anno
args = arg_parse()
trex2 = TRex2APIWrapper(args.trex2_api_token)
# args.device = 'cuda' if torch.cuda.is_available() else 'cpu'
# sam = sam_model_registry['vit_l'](checkpoint=args.sam_checkpoint_path)
# sam.to(device=args.device)
# sam_predictor = SamPredictor(sam)
if __name__ == "__main__":
interactive_1 = ImagePrompter(label="1", scale=1)
generic_vp1 = ImagePrompter(label="Generic Visual Prompt 1", scale=1)
generic_vp2 = ImagePrompter(label="Generic Visual Prompt 2", scale=1)
generic_vp3 = ImagePrompter(label="Generic Visual Prompt 3", scale=1)
generic_vp4 = ImagePrompter(label="Generic Visual Prompt 4", scale=1)
generic_vp5 = ImagePrompter(label="Generic Visual Prompt 5", scale=1)
generic_vp6 = ImagePrompter(label="Generic Visual Prompt 6", scale=1)
generic_vp7 = ImagePrompter(label="Generic Visual Prompt 7", scale=1)
generic_vp8 = ImagePrompter(label="Generic Visual Prompt 8", scale=1)
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue")) as demo:
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
target_image = gr.Image(label="Input Target Image", width=300)
with gr.Column():
with gr.Row():
return_point = gr.Checkbox(label="Return Point Anno")
with gr.Row():
return_score = gr.Checkbox(label="Return Score")
with gr.Row():
point_width = gr.Slider(
label="Line/Point Width",
value=5.0,
minimum=0.0,
maximum=20.0,
step=0.01,
)
with gr.Row():
output_image = gr.Image(label="Output Image", width=300)
with gr.Row():
num_count = gr.Textbox(
label="Counting Results", lines=1, show_copy_button=True
)
with gr.Row():
coco_anno = gr.Textbox(
label="COCO Results",
lines=1,
max_lines=4,
show_copy_button=True,
)
with gr.Column():
with gr.Row():
interactions = "LeftClick (Point Prompt) | PressMove (Box Prompt)"
gr.Markdown(
"<h3 style='text-align: center'> This is for interactive visual prompt</h3>"
)
gr.Markdown(
"<h3 style='text-align: center'>[🖱️ | 🖐️]: 🌟🌟 {} 🌟🌟 </h3>".format(
interactions
)
)
with gr.Row():
interactive = gr.TabbedInterface(
[interactive_1], ["Interactive Visual Prompt"]
)
with gr.Row():
interactions = "LeftClick (Point Prompt) | PressMove (Box Prompt)"
gr.Markdown(
"<h3 style='text-align: center'> This is for generic visual prompt</h3>"
)
gr.Markdown(
"<h3 style='text-align: center'>[🖱️ | 🖐️]: 🌟🌟 {} 🌟🌟 </h3>".format(
interactions
)
)
with gr.Row():
generic = gr.TabbedInterface(
[
generic_vp1,
generic_vp2,
generic_vp3,
generic_vp4,
generic_vp5,
generic_vp6,
generic_vp7,
generic_vp8,
],
["1", "2", "3", "4", "5", "6", "7", "8"],
)
with gr.Row():
visual_threshold = gr.Slider(
label="Visual Prompt Threshold",
value=0.3,
minimum=0.0,
maximum=1.0,
step=0.01,
)
with gr.Row():
clean = gr.Button("Clean Inputs")
infer = gr.Button("Run T-Rex2🦖🦖🦖")
clean.click(
fn=clean_input,
outputs=[
interactive_1,
generic_vp1,
generic_vp2,
generic_vp3,
generic_vp4,
generic_vp5,
generic_vp6,
generic_vp7,
generic_vp8,
],
)
infer.click(
fn=inference,
inputs=[
target_image,
interactive_1,
generic_vp1,
generic_vp2,
generic_vp3,
generic_vp4,
generic_vp5,
generic_vp6,
generic_vp7,
generic_vp8,
visual_threshold,
return_point,
point_width,
return_score,
],
outputs=[output_image, num_count, coco_anno],
)
demo.launch()