-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
296 lines (246 loc) · 12.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import os
import time
import sys
import shutil
import random
from time import strftime
from argparse import ArgumentParser
import numpy as np
import jittor as jt
from jittor import nn
from jittor.dataset import Dataset
from utils.config import add_train_vae_args
from data.data import ShapeDataset, Tree
import utils.util as util
def train(conf):
# load network model
models = util.get_model_module(conf.model_version)
# check if training run already exists. If so, delete it.
if os.path.exists(os.path.join(conf.log_path, conf.exp_name)) or \
os.path.exists(os.path.join(conf.model_path, conf.exp_name)):
response = input('A training run named "%s" already exists, overwrite? (y/n) ' % (conf.exp_name))
if response != 'y':
sys.exit()
if os.path.exists(os.path.join(conf.log_path, conf.exp_name)):
shutil.rmtree(os.path.join(conf.log_path, conf.exp_name))
if os.path.exists(os.path.join(conf.model_path, conf.exp_name)):
shutil.rmtree(os.path.join(conf.model_path, conf.exp_name))
# create directories for this run
os.makedirs(os.path.join(conf.model_path, conf.exp_name))
os.makedirs(os.path.join(conf.log_path, conf.exp_name))
# file log
flog = open(os.path.join(conf.log_path, conf.exp_name, 'train.log'), 'w')
jt.use_cuda = True
# log the object category information
print(f'Object Category: {conf.category}')
flog.write(f'Object Category: {conf.category}\n')
# save config
jt.save(conf, os.path.join(conf.model_path, conf.exp_name, 'conf.pth'))
# create models
# encoder = models.RecursiveEncoder(conf, variational=True, probabilistic=not conf.non_variational)
encoder = models.RecursiveEncoder(conf, variational=True, probabilistic=not conf.non_variational)
decoder = models.RecursiveDecoder(conf)
models = [encoder, decoder]
model_names = ['encoder', 'decoder']
# load pretrained part AE/VAE
pretrain_ckpt_dir = os.path.join(conf.model_path, conf.part_pc_exp_name)
pretrain_ckpt_epoch = conf.part_pc_model_epoch
print(f'Loading ckpt from {pretrain_ckpt_dir}: epoch {pretrain_ckpt_epoch}')
__ = util.load_checkpoint(
# models=[encoder.node_encoder.part_encoder, decoder.part_decoder],
# model_names=['part_pc_encoder', 'part_pc_decoder'],
models=[encoder.part_encoder],
model_names=['part_pc_encoder'],
dirname=pretrain_ckpt_dir,
epoch=pretrain_ckpt_epoch,
strict=True)
# set part_encoder and part_decoder BatchNorm to eval mode
encoder.part_encoder.eval()
for param in encoder.part_encoder.parameters():
param.requires_grad = False
# decoder.part_decoder.eval()
# for param in decoder.part_decoder.parameters():
# param.requires_grad = False
# create optimizers
optimizer = nn.Adam([encoder.parameters(), decoder.parameters()], lr=conf.lr)
# create training and validation datasets and data loaders
train_dataset = ShapeDataset(conf, 'train')
valdt_dataset = ShapeDataset(conf, 'val')
train_dataloader = jt.utils.data.DataLoader(train_dataset, batch_size=conf.batch_size, \
shuffle=True, collate_fn=lambda x: x)
valdt_dataloader = jt.utils.data.DataLoader(valdt_dataset, batch_size=conf.batch_size, \
shuffle=True, collate_fn=lambda x: x)
# create logs
if not conf.no_console_log:
header = ' Time Epoch Dataset Iteration Progress(%) LR LatentLoss TypeLoss KLDivLoss TotalLoss'
if not conf.no_tb_log:
# https://github.com/lanpa/tensorboard-pyjt
from tensorboardX import SummaryWriter
train_writer = SummaryWriter(os.path.join(conf.log_path, conf.exp_name, 'train'))
valdt_writer = SummaryWriter(os.path.join(conf.log_path, conf.exp_name, 'val'))
# start training
print("Starting training ...... ")
flog.write('Starting training ......\n')
start_time = time.time()
last_checkpoint_step = None
last_train_console_log_step, last_valdt_console_log_step = None, None
train_num_batch, valdt_num_batch = len(train_dataloader), len(valdt_dataloader)
# train for every epoch
for epoch in range(conf.epochs):
if not conf.no_console_log:
print(f'training run {conf.exp_name}')
flog.write(f'training run {conf.exp_name}\n')
print(header)
flog.write(header+'\n')
train_batches = enumerate(train_dataloader, 0)
valdt_batches = enumerate(valdt_dataloader, 0)
train_fraction_done, valdt_fraction_done = 0.0, 0.0
valdt_batch_ind = -1
# train for every batch
for train_batch_ind, batch in train_batches:
train_fraction_done = (train_batch_ind + 1) / train_num_batch
train_step = epoch * train_num_batch + train_batch_ind
log_console = not conf.no_console_log and (last_train_console_log_step is None or \
train_step - last_train_console_log_step >= conf.console_log_interval)
if log_console:
last_train_console_log_step = train_step
# make sure the models are in eval mode to deactivate BatchNorm for PartEncoder and PartDecoder
# there are no other BatchNorm / Dropout in the rest of the network
for m in models:
m.eval()
# forward pass (including logging)
total_loss = forward(
batch=batch, encoder=encoder, decoder=decoder, conf=conf,
is_valdt=False, step=train_step, epoch=epoch, batch_ind=train_batch_ind, num_batch=train_num_batch, start_time=start_time,
log_console=log_console, log_tb=not conf.no_tb_log, tb_writer=train_writer,
lr=optimizer.param_groups[0].get('lr'), flog=flog)
# optimize one step
optimizer.step(total_loss)
# save checkpoint
with jt.no_grad():
if last_checkpoint_step is None or \
train_step - last_checkpoint_step >= conf.checkpoint_interval:
print("Saving checkpoint ...... ", end='', flush=True)
flog.write("Saving checkpoint ...... ")
util.save_checkpoint(
models=models, model_names=model_names, dirname=os.path.join(conf.model_path, conf.exp_name),
epoch=epoch, prepend_epoch=True, optimizers=optimizers, optimizer_names=model_names)
print("DONE")
flog.write("DONE\n")
last_checkpoint_step = train_step
# validate one batch
while valdt_fraction_done <= train_fraction_done and valdt_batch_ind+1 < valdt_num_batch:
valdt_batch_ind, batch = next(valdt_batches)
valdt_fraction_done = (valdt_batch_ind + 1) / valdt_num_batch
valdt_step = (epoch + valdt_fraction_done) * train_num_batch - 1
log_console = not conf.no_console_log and (last_valdt_console_log_step is None or \
valdt_step - last_valdt_console_log_step >= conf.console_log_interval)
if log_console:
last_valdt_console_log_step = valdt_step
# set models to evaluation mode
for m in models:
m.eval()
with jt.no_grad():
# forward pass (including logging)
__ = forward(
batch=batch, encoder=encoder, decoder=decoder, conf=conf,
is_valdt=True, step=valdt_step, epoch=epoch, batch_ind=valdt_batch_ind, num_batch=valdt_num_batch, start_time=start_time,
log_console=log_console, log_tb=not conf.no_tb_log, tb_writer=valdt_writer,
lr=optimizer.param_groups[0].get('lr'), flog=flog)
# save the final models
print("Saving final checkpoint ...... ", end='', flush=True)
flog.write("Saving final checkpoint ...... ")
util.save_checkpoint(
models=models, model_names=model_names, dirname=os.path.join(conf.model_path, conf.exp_name),
epoch=epoch, prepend_epoch=False, optimizers=optimizers, optimizer_names=optimizer_names)
print("DONE")
flog.write("DONE\n")
flog.close()
def forward(batch, encoder, decoder, conf,
is_valdt=False, step=None, epoch=None, batch_ind=0, num_batch=1, start_time=0,
log_console=False, log_tb=False, tb_writer=None, lr=None, flog=None):
objects = batch
losses = {
'latent': jt.zeros(1),
'geo': jt.zeros(1),
'center': jt.zeros(1),
'scale': jt.zeros(1),
'type': jt.zeros(1),
'kldiv': jt.zeros(1)
}
# process every data in the batch individually
for obj in objects:
# encode object to get root code
root_code = encoder.encode_structure(obj=obj)
# get kldiv loss
if not conf.non_variational:
root_code, obj_kldiv_loss = jt.chunk(root_code, 2, 1)
obj_kldiv_loss = -obj_kldiv_loss.sum() # negative kldiv, sum over feature dimensions
losses['kldiv'] = losses['kldiv'] + obj_kldiv_loss
# decode root code to get reconstruction loss
obj_losses = decoder.structure_recon_loss(z=root_code, gt_tree=obj)
# with jt.no_grad():
# recon_obj = decoder.decode_structure(z=root_code, model_name=obj.name)
# print(recon_obj)
for loss_name, loss in obj_losses.items():
losses[loss_name] = losses[loss_name] + loss
for loss_name in losses.keys():
losses[loss_name] = losses[loss_name] / len(objects)
losses['latent'] *= conf.loss_weight_latent
losses['geo'] *= conf.loss_weight_geo
losses['center'] *= conf.loss_weight_center
losses['scale'] *= conf.loss_weight_scale
losses['type'] *= conf.loss_weight_type
losses['kldiv'] *= conf.loss_weight_kldiv
total_loss = 0
for loss in losses.values():
total_loss += loss
with jt.no_grad():
# log to console
if log_console:
print(
f'''{strftime("%H:%M:%S", time.gmtime(time.time()-start_time)):>9s} '''
f'''{epoch:>5.0f}/{conf.epochs:<5.0f} '''
f'''{'validation' if is_valdt else 'training':^10s} '''
f'''{batch_ind:>5.0f}/{num_batch:<5.0f} '''
f'''{100. * (1+batch_ind+num_batch*epoch) / (num_batch*conf.epochs):>9.1f}% '''
f'''{lr:>5.2E} '''
f'''{losses['latent'].item():>11.2f} '''
f'''{losses['geo'].item():>11.2f} '''
f'''{losses['center'].item():>11.2f} '''
f'''{losses['scale'].item():>11.2f} '''
f'''{losses['type'].item():>11.2f} '''
f'''{losses['kldiv'].item():>10.2f} '''
f'''{total_loss.item():>10.2f}''')
flog.write(
f'''{strftime("%H:%M:%S", time.gmtime(time.time()-start_time)):>9s} '''
f'''{epoch:>5.0f}/{conf.epochs:<5.0f} '''
f'''{'validation' if is_valdt else 'training':^10s} '''
f'''{batch_ind:>5.0f}/{num_batch:<5.0f} '''
f'''{100. * (1+batch_ind+num_batch*epoch) / (num_batch*conf.epochs):>9.1f}% '''
f'''{lr:>5.2E} '''
f'''{losses['latent'].item():>11.2f} '''
f'''{losses['geo'].item():>11.2f} '''
f'''{losses['center'].item():>11.2f} '''
f'''{losses['scale'].item():>11.2f} '''
f'''{losses['type'].item():>11.2f} '''
f'''{losses['kldiv'].item():>10.2f} '''
f'''{total_loss.item():>10.2f}''')
flog.flush()
# log to tensorboard
if log_tb and tb_writer is not None:
tb_writer.add_scalar('loss', total_loss.item(), step)
tb_writer.add_scalar('lr', lr, step)
tb_writer.add_scalar('latent_loss', losses['latent'].item(), step)
# tb_writer.add_scalar('geo_loss', losses['geo'].item(), step)
# tb_writer.add_scalar('center_loss', losses['center'].item(), step)
# tb_writer.add_scalar('scale_loss', losses['scale'].item(), step)
tb_writer.add_scalar('type_loss', losses['type'].item(), step)
tb_writer.add_scalar('kldiv_loss', losses['kldiv'].item(), step)
return total_loss
if __name__ == '__main__':
sys.setrecursionlimit(5000) # this code uses recursion a lot for code simplicity
parser = ArgumentParser()
parser = add_train_vae_args(parser)
config = parser.parse_args()
train(config)