forked from ocaml/ocaml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathliveness.ml
150 lines (142 loc) · 6.22 KB
/
liveness.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Liveness analysis.
Annotate mach code with the set of regs live at each point. *)
open Mach
let live_at_exit = ref []
let find_live_at_exit k =
try
List.assoc k !live_at_exit
with
| Not_found -> Misc.fatal_error "Liveness.find_live_at_exit"
let live_at_raise = ref Reg.Set.empty
let rec live i finally =
(* finally is the set of registers live after execution of the
instruction sequence.
The result of the function is the set of registers live just
before the instruction sequence.
The instruction i is annotated by the set of registers live across
the instruction. *)
match i.desc with
Iend ->
i.live <- finally;
finally
| Ireturn | Iop(Itailcall_ind) | Iop(Itailcall_imm _) ->
i.live <- Reg.Set.empty; (* no regs are live across *)
Reg.set_of_array i.arg
| Iop op ->
let after = live i.next finally in
if Proc.op_is_pure op (* no side effects *)
&& Reg.disjoint_set_array after i.res (* results are not used after *)
&& not (Proc.regs_are_volatile i.arg) (* no stack-like hard reg *)
&& not (Proc.regs_are_volatile i.res) (* is involved *)
then begin
(* This operation is dead code. Ignore its arguments. *)
i.live <- after;
after
end else begin
let across_after = Reg.diff_set_array after i.res in
let across =
match op with
| Icall_ind | Icall_imm _ | Iextcall _ | Ialloc _
| Iintop (Icheckbound) | Iintop_imm(Icheckbound, _) ->
(* The function call may raise an exception, branching to the
nearest enclosing try ... with. Similarly for bounds checks
and allocation (for the latter: finalizers may throw
exceptions, as may signal handlers).
Hence, everything that must be live at the beginning of
the exception handler must also be live across this instr. *)
Reg.Set.union across_after !live_at_raise
| _ ->
across_after in
i.live <- across;
Reg.add_set_array across i.arg
end
| Iifthenelse(_test, ifso, ifnot) ->
let at_join = live i.next finally in
let at_fork = Reg.Set.union (live ifso at_join) (live ifnot at_join) in
i.live <- at_fork;
Reg.add_set_array at_fork i.arg
| Iswitch(_index, cases) ->
let at_join = live i.next finally in
let at_fork = ref Reg.Set.empty in
for i = 0 to Array.length cases - 1 do
at_fork := Reg.Set.union !at_fork (live cases.(i) at_join)
done;
i.live <- !at_fork;
Reg.add_set_array !at_fork i.arg
| Icatch(rec_flag, handlers, body) ->
let at_join = live i.next finally in
let aux (nfail,handler) (nfail', before_handler) =
assert(nfail = nfail');
let before_handler' = live handler at_join in
nfail, Reg.Set.union before_handler before_handler'
in
let aux_equal (nfail, before_handler) (nfail', before_handler') =
assert(nfail = nfail');
Reg.Set.equal before_handler before_handler'
in
let live_at_exit_before = !live_at_exit in
let rec fixpoint before_handlers =
live_at_exit := before_handlers @ !live_at_exit;
let before_handlers' = List.map2 aux handlers before_handlers in
live_at_exit := live_at_exit_before;
match rec_flag with
| Cmm.Nonrecursive ->
before_handlers'
| Cmm.Recursive ->
if List.for_all2 aux_equal before_handlers before_handlers'
then before_handlers'
else fixpoint before_handlers'
in
let init_state =
List.map (fun (nfail, _handler) -> nfail, Reg.Set.empty) handlers
in
let before_handler = fixpoint init_state in
(* We could use handler.live instead of Reg.Set.empty as the initial
value but we would need to clean the live field before doing the
analysis (to remove remnants of previous passes). *)
live_at_exit := before_handler @ !live_at_exit;
let before_body = live body at_join in
live_at_exit := live_at_exit_before;
i.live <- before_body;
before_body
| Iexit nfail ->
let this_live = find_live_at_exit nfail in
i.live <- this_live ;
this_live
| Itrywith(body, handler) ->
let at_join = live i.next finally in
let before_handler = live handler at_join in
let saved_live_at_raise = !live_at_raise in
live_at_raise := Reg.Set.remove Proc.loc_exn_bucket before_handler;
let before_body = live body at_join in
live_at_raise := saved_live_at_raise;
i.live <- before_body;
before_body
| Iraise _ ->
i.live <- !live_at_raise;
Reg.add_set_array !live_at_raise i.arg
let reset () =
live_at_raise := Reg.Set.empty;
live_at_exit := []
let fundecl f =
let initially_live = live f.fun_body Reg.Set.empty in
(* Sanity check: only function parameters can be live at entrypoint *)
let wrong_live = Reg.Set.diff initially_live (Reg.set_of_array f.fun_args) in
if not (Reg.Set.is_empty wrong_live) then begin
Misc.fatal_errorf "@[Liveness.fundecl:@\n%a@]"
Printmach.regset wrong_live
end