-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathDDPG.py
156 lines (120 loc) · 5.88 KB
/
DDPG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#-*- coding:utf-8 -*-
"""
deep deterministic policy gradient
"""
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
class Replay_buffer():
def __init__(self, max_size):
self.storage = []
self.max_size = max_size
self.ptr = 0
def push(self, data):
if len(self.storage) == self.max_size:
self.storage[int(self.ptr)] = data
self.ptr = (self.ptr + 1) % self.max_size
else:
self.storage.append(data)
def sample(self, batch_size):
ind = np.random.randint(0, len(self.storage), size=batch_size)
x, y, u, r, d = [], [], [], [], []
for i in ind:
X, Y, U, R, D = self.storage[i]
x.append(np.array(X, copy=False))
y.append(np.array(Y, copy=False))
u.append(np.array(U, copy=False))
r.append(np.array(R, copy=False))
d.append(np.array(D, copy=False))
return np.array(x), np.array(y), np.array(u), np.array(r).reshape(-1, 1), np.array(d).reshape(-1, 1)
class Actor(nn.Module):
def __init__(self, state_dim, action_dim, max_action):
super(Actor, self).__init__()
self.l1 = nn.Linear(state_dim, 400)
self.l2 = nn.Linear(400, 300)
self.l3 = nn.Linear(300, action_dim)
self.max_action = max_action
def forward(self, x):
x = F.relu(self.l1(x))
x = F.relu(self.l2(x))
x = self.max_action * torch.tanh(self.l3(x))
return x
class Critic(nn.Module):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
self.l1 = nn.Linear(state_dim + action_dim, 400)
self.l2 = nn.Linear(400 , 300)
self.l3 = nn.Linear(300, 1)
def forward(self, x, u):
x = F.relu(self.l1(torch.cat([x, u], 1)))
x = F.relu(self.l2(x))
x = self.l3(x)
return x
class DDPG(object):
def __init__(self, state_dim, action_dim, max_action,capacity,device):
self.device = device
self.actor = Actor(state_dim, action_dim, max_action).to(self.device)
self.actor_target = Actor(state_dim, action_dim, max_action).to(self.device)
self.actor_target.load_state_dict(self.actor.state_dict())
self.actor_optimizer = optim.Adam(self.actor.parameters(), 1e-3)
self.critic = Critic(state_dim, action_dim).to(self.device)
self.critic_target = Critic(state_dim, action_dim).to(self.device)
self.critic_target.load_state_dict(self.critic.state_dict())
self.critic_optimizer = optim.Adam(self.critic.parameters(), 1e-3)
self.replay_buffer = Replay_buffer(capacity)
self.num_critic_update_iteration = 0
self.num_actor_update_iteration = 0
self.num_training = 0
def select_action(self, state):
# FloatTensor 建立FloatTensor类型
state = torch.FloatTensor(state.reshape(1, -1)).to(self.device)
# cpu():提取CPU的data数据, numpy():tensor转numpy, flatten():降成一维
return self.actor(state).cpu().data.numpy().flatten()
def update(self,tau=0.005,batch_size=64):
for it in range(10):
# Sample replay buffer
x, y, u, r, d = self.replay_buffer.sample(batch_size)
state = torch.FloatTensor(x).to(self.device)
action = torch.FloatTensor(u).to(self.device)
next_state = torch.FloatTensor(y).to(self.device)
done = torch.FloatTensor(d).to(self.device)
reward = torch.FloatTensor(r).to(self.device)
# Compute the target Q value
target_Q = self.critic_target(next_state, self.actor_target(next_state))
target_Q = reward + ((1 - done) * 0.99 * target_Q).detach()
# Get current Q estimate
current_Q = self.critic(state, action)
# Compute critic loss
critic_loss = F.mse_loss(current_Q, target_Q)
# Optimize the critic
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# Compute actor loss
actor_loss = -self.critic(state, self.actor(state)).mean()
# Optimize the actor
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# Update the frozen target models
for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):
target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)
for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()):
target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)
self.num_actor_update_iteration += 1
self.num_critic_update_iteration += 1
def save(self, directory, i):
torch.save(self.actor.state_dict(), directory + str(i) + '_actor.pth')
torch.save(self.critic.state_dict(), directory + str(i) + '_critic.pth')
print("====================================")
print("Model has been saved...")
print("====================================")
def load(self, directory, i):
self.actor.load_state_dict(torch.load(directory + str(i) + '_actor.pth'))
self.critic.load_state_dict(torch.load(directory + str(i) + '_critic.pth'))
print("====================================")
print("model has been loaded...")
print("====================================")