-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDistance_and_Time_Matrix.py
411 lines (339 loc) · 17 KB
/
Distance_and_Time_Matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import pandas as pd
import math
from math import sin, cos, sqrt, atan2, radians
from machineLearningModel import ascend, descend, hover, forwardFlight
# import folium
# from scipy.optimize import fsolve
# import matplotlib.pyplot as plt
import requests
import json
# import itertools
from datetime import datetime, timedelta
from docplex.mp.model import Model
import time
# import networkx as nx
import itertools
# Data initialization
providerLocation = "data/ProviderLocationScenario_1.csv"
# providerLocation = "data/ProviderLocation_Hourly.csv"
# droneData = "data/DroneDataScenario_2_DJI.csv"
# deliveryData = "data/Courier1_deliveryData_AvgPower.csv"
# deliveryData = "data/VehicleOnlyDataFile.csv"
deliveryData = "data/VehicleSmallVTOL.csv"
minNumberOfDrones = True
debug = True
batteryReplacement = True
visualization = False
packageDropping = False
gap = 0.15
# Flight components
hoveringBolLoaded = True
hoveringBolUnloaded = True
# maxPermissibleDelay = 1800.0 # in seconds **This is the time window for delivery
packageUnloadingTimeDropping = 30.0 # in seconds. **Need to delare for different drone types
if packageDropping == True:
packageUnloadingTimeLanding = 0.0 # in seconds. **Need to delare for different drone types
else:
packageUnloadingTimeLanding = 30.0 # in seconds. **Need to delare for different drone types
packageLoadingTime = 300.0 # in seconds. **Need to delare for different drone types
# For Vehicle
packageLoadingTimeVehicle = 300
packageUnloadingTimeVehicle = 300
air_density = 1.2754 # in kg/m^3
t_0 = datetime.strptime('2/3/2015 1:00', "%m/%d/%Y %H:%M").timestamp() #converts time into a number. Need to understand the use**
# t_0 = datetime.strptime('2/2/2015 6:00:00 PM', "%m/%d/%Y %I:%M:%S %p").timestamp()
# print("initial time: ", t_0) # 1646665200.0
# Drone Type Used
# vehicle = 'Toyota Prius'
# C_L = 60.0 # hourly labor cost in dollar
# n_d = 5.0 # number of drones per operator
# C_L_d = math.ceil(C_L/n_d) # hourly operator cost per drone
C_E = 0.13 # energy cost per kwh in dollar
# For Ground Vehicle
vehicle = 'Hyundai Accent 2022'
# Model: Toyota Prius (2021)
# Price of New Car: $25735 (Source: fueleconomy.gov)
# Assuming 200000 miles expected lifetime (Source: Consumer Survey)
# Maintenance cost: $528 per year assuming 2400 hours of annual usage (Source: edmunds.com)
# Car driver wage: $16.83 (Source: Bureau of Labor Statics, USA)
# Average vehicle speed: 20 mph (Source: San Francisco Municipal Transportation Agency)
# Model: KIA Niro (2022)
# Price of New Car: $24690 (Source: fueleconomy.gov)
# Assuming 200000 miles expected lifetime (Source: Consumer Survey)
# Maintenance cost: $600 per year assuming 2400 hours of annual usage (Source: edmunds.com)
# Car driver wage: $16.83 (Source: Bureau of Labor Statics, USA)
# Average vehicle speed: 20 mph (Source: San Francisco Municipal Transportation Agency)
# Model: Honda Insight (2022)
# Price of New Car: $25760 (Source: fueleconomy.gov)
# Assuming 200000 miles expected lifetime (Source: Consumer Survey)
# Maintenance cost: $528 per year assuming 2400 hours of annual usage (Source: edmunds.com)
# Car driver wage: $16.83 (Source: Bureau of Labor Statics, USA)
# Average vehicle speed: 20 mph (Source: San Francisco Municipal Transportation Agency)
# Model: Hyundai Accent (2022)
# Price of New Car: $19600 (Source: fueleconomy.gov)
# Assuming 200000 miles expected lifetime (Source: Consumer Survey)
# Maintenance cost: $528 per year assuming 2400 hours of annual usage (Source: edmunds.com)
# Car driver wage: $16.83 (Source: Bureau of Labor Statics, USA)
# Average vehicle speed: 20 mph (Source: San Francisco Municipal Transportation Agency)
# Model: Honda Civic (2015)
# Price of New Car: $20040 (Source: fueleconomy.gov)
# Assuming 200000 miles expected lifetime (Source: Consumer Survey)
# Maintenance cost: $528 per year assuming 2400 hours of annual usage (Source: edmunds.com)
# Car driver wage: $16.83 (Source: Bureau of Labor Statics, USA)
# Average vehicle speed: 20 mph (Source: San Francisco Municipal Transportation Agency)
# Hourly Amortized costs for ground vehicle
C_v = 0.0064
C_mv = 0.22
C_lv = 16.83
if vehicle == 'Toyota Prius 2021':
MPG = 54 # Considering city driving
elif vehicle == 'Hyundai Accent 2022':
MPG = 33 # Considering city driving
else:
MPG = 31 # Considering city driving
# if vehicle == 'Toyota Prius 2021':
# C_v = 0.0064
# C_mv = 0.22
# C_lv = 16.83
# MPG = 54 # Considering city driving
# elif vehicle == 'KIA Niro 2022':
# C_v = 0.0062
# C_mv = 0.25
# C_lv = 16.83
# MPG = 51 # Considering city driving
# elif vehicle == 'Honda Insight 2022':
# C_v = 0.00644
# C_mv = 0.22
# C_lv = 16.83
# MPG = 55 # Considering city driving
# elif vehicle == 'Hyundai Accent 2022':
# C_v = 0.0049
# C_mv = 0.25
# C_lv = 16.83
# MPG = 33 # Considering city driving
# else:
# C_v = 0.00501
# C_mv = 0.22
# C_lv = 16.83
# MPG = 31 # Considering city driving
conversionFactor = 33.7
vehicleEnergyConsumptionPerMile = conversionFactor / MPG # kwh/mile
# Defining the Big M's for the constraints**
M = 1000000000000.0 # a large number (for time constraints)
gta = 0.2 # drone parameter in the Dorling model
grvitational_constant = 9.81 # in meter/s^2
whTokwhConvert = 0.001
wsecToWattHourConvert = 1/3600
hourToSecConvert = 3600.0
# '''Energy data with Package****(May need to declare for different types of drones)
# '''Data for ascending**
AscendHeight = 200 # in ft
durationAscendLoaded = 25.002 # in seconds
# Data for ascending in angle
avgWattAngleAscendLoaded = 0.0 # watts
durationAngleAscendLoaded = 0.0 # in seconds
# End of Data for ascending'''
# '''Data for descending
if packageDropping == True:
durationDescendLoaded = 35.209 # in seconds.
else:
durationDescendLoaded = 45.209 # in seconds
# Data for descending in angle
avgWattAngleDescendLoaded = 0.0 # watts
durationAngleDescendLoaded = 0.0 # in seconds
# End of Data for descending'''
# Data for Hovering
if hoveringBolLoaded == True:
if packageDropping == True:
durationHoverLoaded = 30.0 # in seconds
else:
durationHoverLoaded = 5.0 # in seconds
# End Energy data with Package****(May need to declare for different types of drones)'''
# '''Energy data for Empty Drone. ***(May need to declare for different types of drones)'''
# '''Data for ascending**
if packageDropping == True:
durationAscendUnloaded = 20.002 # in seconds ToDo: make sure to have this ascending time to be 5 seconds less than actual ascending time when package dropping
else:
durationAscendUnloaded = 25.002 # in seconds
avgWattAngleAscendUnloaded = 0.0 # watts
durationAngleAscendUnloaded = 0.0 # in seconds
# End of Data for ascending'''
# '''Data for descending
durationDescendUnloaded = 45.209 # in seconds
avgWattAngleDescendUnloaded = 0.0 # watts
durationAngleDescendUnloaded = 0.0 # in seconds
# End of Data for descending'''
# Data for Hovering
if hoveringBolUnloaded == True:
avgWattHoverUnloaded = 1039.254162 # watts
durationHoverUnloaded = 5.0 # in seconds
# End of Energy data for Empty Drone. ***(May need to declare for different types of drones)'''
# Class to define the delivery locations
class Node:
def __init__(self, deliveryID, readyTime, lat, lon, payload, distanceFromDepot, timeFromDepot, timeReturnToDepot):
self.deliveryID = deliveryID
self.readyTime = readyTime
self.lat = lat
self.lon = lon
self.packageWeight = payload
# self.avgWattAngleAscendLoaded = 0.0
# self.avgWattAngleDescendLoaded = 0.0
self.distanceFromDepot = distanceFromDepot
self.timeFromDepot = timeFromDepot # store for each drone
self.timeReturnToDepot = timeReturnToDepot # store for each drone
self.earliestServiceTime = 0.0
self.maxDelayedServiceTime = 0.0
self.energyconsumptionDronesArrival = [] # store for each drone, indexed by drone
self.energyconsumptionDronesReturn = [] # store for each drone, indexed by drone
# Class to define type of drones (Need to modify for type of drones)
class Drone:
def __init__(self, dType, numRotors, droneSpeedLoaded, droneSpeedUnloaded, payloadCap, bodyMass, batteryMass, initCharge,
minChargeReq, flyingTimePerMile, batReplaceTime, c_d, c_m, c_bat, avgWattAscendLoaded, avgWattDescendLoaded,
avgWattHoverLoaded, avgWattFlightLoaded, avgWattAscendUnLoaded, avgWattDescendUnLoaded, avgWattHoverUnLoaded,
avgWattFlightUnLoaded):
self.dType = dType
self.numRotors = numRotors
self.optimalSpeedLoaded = droneSpeedLoaded
self.optimalSpeedUnloaded = droneSpeedUnloaded
self.capacity = payloadCap
self.bodyMass = bodyMass
self.batteryMass = batteryMass
self.initCharge = initCharge
self.minChargeReq = minChargeReq
self.allowableEnergy = initCharge - minChargeReq
self.batReplaceTime = batReplaceTime
self.flyingTimePerMile = flyingTimePerMile
self.avgWattAscendLoaded = avgWattAscendLoaded
self.avgWattDescendLoaded = avgWattDescendLoaded
self.avgWattHoverLoaded = avgWattHoverLoaded
self.avgWattFlightLoaded = avgWattFlightLoaded
self.avgWattAscendUnLoaded = avgWattAscendUnLoaded
self.avgWattDescendUnLoaded = avgWattDescendUnLoaded
self.avgWattHoverUnLoaded = avgWattHoverUnLoaded
self.avgWattFlightUnLoaded = avgWattFlightUnLoaded
self.C_d = c_d
self.C_d_M = c_m
self.F_c = c_m + c_d + 480
self.C_bat = c_bat
self.M_g = 2.5*initCharge #(for battery replacement constraints)**
self.M_l = -initCharge
self.M_u = initCharge
self.Q_l = -initCharge
self.Q_u = initCharge
# Ideally the optimal speed will be a dictionary where the keys are delivery locations and values are the optimal speed for that location.
# for now just using a single optimal value for all payloads
class NestedDict(dict):
def __missing__(self, x):
self[x] = NestedDict()
return self[x]
# Function to create a list of objects (Drone objects for number of type of drones,
# Node object to create each delivery location,
# and the adress for source location. Here coding for provider location can be done outside )
def CreateListOfObjects(providerLocation, deliveryData):
# listOfDrones = []
listOfDeliveryLocs = []
provider_df = pd.read_csv(providerLocation)
providerLat = provider_df['lat'][0]
providerLon = provider_df['long'][0]
# drone_df = pd.read_csv(droneData)
#
# for row in range(len(drone_df)):
# listOfDrones.append(
# Drone(drone_df['type'][row], drone_df['numRotors'][row], drone_df['droneSpeedLoaded'][row],
# drone_df['droneSpeedUnloaded'][row], drone_df['payloadCap'][row], drone_df['bodyMass'][row],
# drone_df['batteryMass'][row], drone_df['initBatCharge'][row], drone_df['minChargeReq'][row],
# drone_df['flyingTimePerMile'][row], drone_df['batReplaceTime'][row], drone_df['C_d'][row],
# drone_df['C_M'][row],
# drone_df['C_bat'][row], drone_df['AvgWattAscendLoaded'][row], drone_df['AvgWattDescendLoaded'][row],
# drone_df['AvgWattHoverLoaded'][row], drone_df['AvgWattFlightLoaded'][row],
# drone_df['AvgWattAscendUnLoaded'][row],
# drone_df['AvgWattDescendUnLoaded'][row], drone_df['AvgWattHoverUnLoaded'][row],
# drone_df['AvgWattFlightUnLoaded'][row]))
delivery_df = pd.read_csv(deliveryData)
for row in range(len(delivery_df)):
foodReadyTime = datetime.strptime(delivery_df['food_ready_time'][row],
"%m/%d/%Y %H:%M").timestamp() # "%m/%d/%Y %I:%M:%S %p"
listOfDeliveryLocs.append(Node(delivery_df['delivery_id'][row], foodReadyTime, delivery_df['dropoff_lat'][row],
delivery_df['dropoff_long'][row], delivery_df['PackageWeight'][row], delivery_df['Road_Distance'][row], delivery_df['Time_From_Depot'][row], delivery_df['Time_ReturnTo_Depot'][row]))
return listOfDeliveryLocs, providerLat, providerLon
# Function for calculating the distance for each location pair
def computeDistOfEachPair(srclat, srclon, destlat, destlon):
R = 3958.8 # in mile
rad_srcLat = radians(abs(srclat))
rad_srcLon = radians(abs(srclon))
rad_destLat = radians(abs(destlat))
rad_destLon = radians(abs(destlon))
dLon = rad_destLon - rad_srcLon
dLat = rad_destLat - rad_srcLat
a = sin(dLat / 2) ** 2 + cos(rad_srcLat) * cos(rad_destLat) * sin(dLon / 2) ** 2
c = 2 * atan2(sqrt(a), sqrt(1 - a))
distOfEachPair = R * c
return distOfEachPair # in mile
def computeRoadDistanceFromDepot(srclat, srclon, destlat, destlon):
r = requests.get(
f"""http://router.project-osrm.org/route/v1/car/{srclon},{srclat};{destlon},{destlat}?overview=false""")
route = json.loads(r.content)["routes"][0]
drivingDistance = route["distance"] * 0.000621371 # one-way distance in mile
travelTimeAPI = (route["duration"]) # single-trip travel time in seconds
return drivingDistance, travelTimeAPI
def createListOfLocsWithDummy(listOfDeliveryLocs, providerLat, providerLon):
listOfLocsDummySink = []
if listOfDeliveryLocs:
listOfLocsDummySink.append(Node(0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0))
# listOfLocsDummySink[-1].distanceFromDepot = 0.0
listOfLocsDummySink[-1].lat = providerLat
listOfLocsDummySink[-1].lon = providerLon
listOfLocsDummySink[-1].earliestServiceTime = 0.0
listOfLocsDummySink[-1].maxDelayedServiceTime = 0.0
# listOfLocsDummySink[-1].timeFromDepot = 0
# listOfLocsDummySink[-1].timeReturnToDepot = 0
listOfLocsDummySink[-1].energyconsumptionDronesArrival = 0
listOfLocsDummySink[-1].energyconsumptionDronesReturn = 0
listOfLocsDummySink.extend(listOfDeliveryLocs)
listOfLocsDummySink.append(Node(-99, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0))
# listOfLocsDummySink[-1].distanceFromDepot = 0.0
listOfLocsDummySink[-1].lat = providerLat
listOfLocsDummySink[-1].lon = providerLon
listOfLocsDummySink[-1].earliestServiceTime = 0.0
listOfLocsDummySink[-1].maxDelayedServiceTime = 0.0
# listOfLocsDummySink[-1].timeFromDepot = 0
# listOfLocsDummySink[-1].timeReturnToDepot = 0
listOfLocsDummySink[-1].energyconsumptionDronesArrival = 0
listOfLocsDummySink[-1].energyconsumptionDronesReturn = 0
return listOfLocsDummySink
# Calculating distance and Time matrix for circular delivery of ground vehicles
def distanceAndTimeMatrix(listOfLocsDummySink):
distanceMatrix = {}
timeMatrix = {}
energyMatrix = {}
for i in listOfLocsDummySink[:-1]:
sourceLat = i.lat
sourceLon = i.lon
for j in listOfLocsDummySink[170:]:
if ((i.deliveryID, j.deliveryID) or (j.deliveryID, i.deliveryID)) in distanceMatrix:
continue
destLat = j.lat
destLon = j.lon
if i == j:
distanceMatrix[(i.deliveryID, j.deliveryID)], timeMatrix[(i.deliveryID, j.deliveryID)] = 0, 0
energyMatrix[(i.deliveryID, j.deliveryID)] = 0
else:
distanceMatrix[(i.deliveryID, j.deliveryID)], timeMatrix[
(i.deliveryID, j.deliveryID)] = computeRoadDistanceFromDepot(sourceLat, sourceLon, destLat, destLon)
energyMatrix[(i.deliveryID, j.deliveryID)] = distanceMatrix[(
i.deliveryID, j.deliveryID)] * vehicleEnergyConsumptionPerMile
distanceMatrix[(j.deliveryID, i.deliveryID)] = distanceMatrix[(i.deliveryID, j.deliveryID)]
timeMatrix[(j.deliveryID, i.deliveryID)] = timeMatrix[(i.deliveryID, j.deliveryID)]
energyMatrix[(j.deliveryID, i.deliveryID)] = energyMatrix[(i.deliveryID, j.deliveryID)]
return distanceMatrix, energyMatrix, timeMatrix
listOfDeliveryLocs, providerLat, providerLon = CreateListOfObjects(providerLocation, deliveryData)
listOfLocsDummySink = createListOfLocsWithDummy(listOfDeliveryLocs, providerLat, providerLon)
distanceMatrix, energyMatrix, timeMatrix = distanceAndTimeMatrix(listOfLocsDummySink)
# Create a DataFrame from the dictionary
# distancedf = pd.DataFrame(list(distanceMatrix.items()), columns=['Pair', 'Distance'])
# timedf = pd.DataFrame(list(timeMatrix.items()), columns=['Pair', 'Time'])
# energydf = pd.DataFrame(list(energyMatrix.items()), columns=['Pair', 'Energy'])
# distancedf.to_csv('Distance_Matrix.csv')
# timedf.to_csv('Time_Matrix.csv')
# energydf.to_csv('Energy_Matrix.csv')
print(distanceMatrix)