-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDiffEq3DFunction.py
937 lines (783 loc) · 53.2 KB
/
DiffEq3DFunction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 28 10:39:42 2023
@author: 20225533
"""
#Code developed by Ilaria Fichera for the analysis of the FDM method Du Fort & Frankel solving the 3D diffusion equation with one intermittent omnidirectional sound source
import math
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from scipy.integrate import simps
from scipy import linalg
import sys
#uncomment this if you need drawnow
#from drawnow import drawnow
from math import ceil
from math import log
from FunctionRT import *
#from FunctionEDT import *
#from FunctionClarity import *
#from FunctionDefinition import *
#from FunctionCentreTime import *
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator
import time as time
from scipy import stats
from scipy.interpolate import griddata
from matplotlib.animation import FuncAnimation
st = time.time() #start time of calculation
def calculate_energy_density_diffusion(k,length,width,height,x_source,y_source,z_source,x_rec,y_rec,z_rec):
#%%
###############################################################################
#INPUT VARIABLES
###############################################################################
#General settings
c0= 343 #adiabatic speed of sound [m.s^-1]
m_atm = 0 #air absorption coefficient [1/m] from Billon 2008 paper and Navarro paper 2012
#Spatial discretization
dx = 0.5 #distance between grid points x direction [m] #See Documentation for more insight about dt and dx
dy = dx #distance between grid points y direction [m]
dz = dx #distance between grid points z direction [m]
#Time discretization
dt = 1/20000 #distance between grid points on the time discretization [s] #See Documentation for more insight about dt and dx
#Absorption term and Absorption coefficients
th = 3 #int(input("Enter type Absortion conditions (option 1,2,3):"))
# options Sabine (th=1), Eyring (th=2) and modified by Xiang (th=3)
alpha_1 = 0.1 #Absorption coefficient for Surface1 - Floor
alpha_2 = 0.1 #Absorption coefficient for Surface2 - Ceiling
alpha_3 = 0.1 #Absorption coefficient for Surface3 - Wall Front
alpha_4 = 0.1 #Absorption coefficient for Surface4 - Wall Back
alpha_5 = 0.1 #Absorption coefficient for Surface5 - Wall Left
alpha_6 = 0.1 #Absorption coefficient for Surface6 - Wall Right
#Type of Calculation
#Choose "decay" if the objective is to calculate the energy decay of the room with all its energetic parameters;
#Choose "stationarysource" if the aim is to understand the behaviour of a room subject to a stationary source
tcalc = "decay"
#Set initial condition - Source Info (interrupted method)
Ws = 0.01 #Source point power [Watts] interrupted after "sourceon_time" seconds; 10^-2 W => correspondent to 100dB
#%%
###############################################################################
#CALCULATION SECTION
###############################################################################
#Fixed inputs
pRef = 2 * (10**-5) #Reference pressure in Pa
rho = 1.21 #air density [kg.m^-3] at 20°C
#Frequency resolution & spatial parameters
fsample = 1/dt #frequency spatial resolution (sampling period)
#Room characteristics
S1,S2 = length*width, length*width #xy planes
S3,S4 = length*height, length*height #xz planes
S5,S6 = width*height, width*height #yz planes
S = length*width*2 + length*height*2 + width*height*2 #Total Surface Area[m2]
V = length*width*height #Volume of the room [m^3]
#Creating of meshgrid
x = np.arange(0, length+dx, dx) #mesh points in space x direction
y = np.arange(0, width+dy, dy) #mesh points in space y direction
z = np.arange(0, height+dz, dz) #mesh points in space z direction
Nx = len(x) #number of point in the x direction
Ny = len(y) #number of point in the y direction
Nz = len(z) #number of point in the z direction
yy, xx , zz = np.meshgrid(y,x,z) #Return coordinate matrices from coordinate vectors; create the 3D grid
#uncoment this when using drawnow
#Figure 1: Visualization of 3D meshgrid
# fig = plt.figure(1)
# ax = plt.axes(projection ="3d")
# ax.scatter(xx, yy, zz, c=zz, cmap='Greens')
# plt.title("Figure 1: Visualization of 3D meshgrid")
#Absorption term for boundary conditions
def abs_term(th,alpha):
if th == 1:
Absx = (c0*alpha)/4 #Sabine
elif th == 2:
Absx = (c0*(-log(1-alpha)))/4 #Eyring
elif th == 3:
Absx = (c0*alpha)/(2*(2-alpha)) #Modified by Xiang
return Absx
Abs_1 = abs_term(th,alpha_1) #absorption term for S1
Abs_2 = abs_term(th,alpha_2) #absorption term for S2
Abs_3 = abs_term(th,alpha_3) #absorption term for S3
Abs_4 = abs_term(th,alpha_4) #absorption term for S4
Abs_5 = abs_term(th,alpha_5) #absorption term for S5
Abs_6 = abs_term(th,alpha_6) #absorption term for S6
#Absorption parameters for room
alpha_average = (alpha_1*S1 + alpha_2*S2 + alpha_3*S3 + alpha_4*S4 + alpha_5*S5 + alpha_6*S6)/S #average absorption
Eq_A = alpha_1*S1 + alpha_2*S2 + alpha_3*S3 + alpha_4*S4 + alpha_5*S5 + alpha_6*S6 #equivalent absorption area of the room
RT_Sabine = 0.16*V/Eq_A
sourceon_time = round(RT_Sabine,1)#time that the source is ON before interrupting [s]
recording_time = 2*sourceon_time #total time recorded for the calculation [s]
#Time resolution
t = np.arange(0, recording_time, dt) #mesh point in time
recording_steps = ceil(recording_time/dt) #number of time steps to consider in the calculation
t_35dB = round(35/60*RT_Sabine,4)
idx_t35dB = np.argmin(np.abs(t - t_35dB))#[0][0] #index at which the t array is equal to the t_ at the decay of -35dB
#Diffusion parameters
mean_free_path = (4*V)/S #mean free path for 3D
mean_free_time= mean_free_path/c0 #mean free time for 3D
mean_free_time_step = int(mean_free_time/dt)
D_th = (mean_free_path*c0)/3
#Longest dimension in the room
longest_dimension = math.sqrt(length**2+width**2)
longest_dimension_time = longest_dimension/c0
longest_dimension_step = int(longest_dimension_time/dt)
#Condition for the model to be unconditionally stable
# beta_zero_condition = ((beta_zero**2) - 1)/(1+(beta_zero**2)+(2*beta_zero)) #from Navarro 2012 paper
# if beta_zero_condition >1:
# print("aa! error! Check beta condition")
#Initial condition - Source Info (interrupted method)
Vs=dx*dy*dz #Volume of the source
w1=Ws/Vs #w1 = round(Ws/Vs,4) #power density of the source [Watts/(m^3))]
sourceon_steps = ceil(sourceon_time/dt) #time steps at which the source is calculated/considered in the calculation
s1 = np.multiply(w1,np.ones(sourceon_steps)) #energy density of source number 1 at each time step position
source1 = np.append(s1, np.zeros(recording_steps-sourceon_steps)) #This would be equal to s1 if and only if recoding_steps = sourceon_steps
###############################################################################
#SOURCE INTERPOLATION
###############################################################################
#Finding index in meshgrid of the source position
coord_source = [x_source,y_source,z_source] #coordinates of the receiver position in an list
# Calculate the fractional indices
row_lr_s = int(np.floor(x_source / dx))
row_up_s = row_lr_s + 1
col_lr_s = int(np.floor(y_source / dy))
col_up_s = col_lr_s + 1
dep_lr_s = int(np.floor(z_source / dz))
dep_up_s = dep_lr_s + 1
# Calculate the interpolation weights
weight_row_up_s = (x_source / dx) - row_lr_s
weight_row_lr_s = 1 - weight_row_up_s
weight_col_up_s = (y_source / dy) - col_lr_s
weight_col_lr_s = 1 - weight_col_up_s
weight_dep_up_s = (z_source / dz) - dep_lr_s
weight_dep_lr_s = 1 - weight_dep_up_s
s = np.zeros((Nx,Ny,Nz)) #matrix of zeros for source
# Perform linear interpolation
s[row_lr_s, col_lr_s, dep_lr_s] += source1[0] * weight_row_lr_s * weight_col_lr_s * weight_dep_lr_s
s[row_lr_s, col_lr_s, dep_up_s] += source1[0] * weight_row_lr_s * weight_col_lr_s * weight_dep_up_s
s[row_lr_s, col_up_s, dep_lr_s] += source1[0] * weight_row_lr_s * weight_col_up_s * weight_dep_lr_s
s[row_lr_s, col_up_s, dep_up_s] += source1[0] * weight_row_lr_s * weight_col_up_s * weight_dep_up_s
s[row_up_s, col_lr_s, dep_lr_s] += source1[0] * weight_row_up_s * weight_col_lr_s * weight_dep_lr_s
s[row_up_s, col_lr_s, dep_up_s] += source1[0] * weight_row_up_s * weight_col_lr_s * weight_dep_up_s
s[row_up_s, col_up_s, dep_lr_s] += source1[0] * weight_row_up_s * weight_col_up_s * weight_dep_lr_s
s[row_up_s, col_up_s, dep_up_s] += source1[0] * weight_row_up_s * weight_col_up_s * weight_dep_up_s
###############################################################################
#RECEIVER INTERPOLATION
###############################################################################
#Finding index in meshgrid of the receiver position
coord_receiver = [x_rec,y_rec,z_rec] #coordinates of the receiver position in an list
#Calculate the fractional indices for receiver
row_lr_r = int(np.floor(x_rec / dx))
row_up_r = row_lr_r + 1
col_lr_r = int(np.floor(y_rec / dy))
col_up_r = col_lr_r + 1
dep_lr_r = int(np.floor(z_rec / dz))
dep_up_r = dep_lr_r + 1
#Calculate the interpolation weights for receiver
weight_row_up_r = (x_rec / dx) - row_lr_r #weight x upper
weight_row_lr_r = 1 - weight_row_up_r #weight x lower
weight_col_up_r = (y_rec / dy) - col_lr_r #weight y upper
weight_col_lr_r = 1 - weight_col_up_r #weight y lower
weight_dep_up_r = (z_rec / dz) - dep_lr_r #weight z upper
weight_dep_lr_r = 1 - weight_dep_up_r #weight z lower
#distance between source and receiver
dist_sr = math.sqrt((abs(x_rec - x_source))**2 + (abs(y_rec - y_source))**2 + (abs(z_rec - z_source))**2) #distance between source and receiver
#distance between source and each mesh point in the x direction
dist_x = np.sqrt((((xx[:, col_lr_r, dep_lr_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_lr_r))+\
(xx[:, col_lr_r, dep_up_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_up_r))+\
(xx[:, col_up_r, dep_lr_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_lr_r))+\
(xx[:, col_up_r, dep_up_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_up_r))+\
(xx[:, col_lr_r, dep_lr_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_lr_r))+\
(xx[:, col_lr_r, dep_up_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_up_r))+\
(xx[:, col_up_r, dep_lr_r]*(weight_row_up_r * weight_col_up_r * weight_dep_lr_r))+\
(xx[:, col_up_r, dep_up_r]*(weight_row_up_r * weight_col_up_r * weight_dep_up_r))) - x_source)**2 +\
(((yy[row_lr_r, col_lr_r, dep_lr_r]*(weight_row_lr_r * weight_col_lr_r* weight_dep_lr_r))+\
(yy[row_lr_r, col_lr_r, dep_up_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_up_r))+\
(yy[row_lr_r, col_up_r, dep_lr_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_lr_r))+\
(yy[row_lr_r, col_up_r, dep_up_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_up_r))+\
(yy[row_up_r, col_lr_r, dep_lr_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_lr_r))+\
(yy[row_up_r, col_lr_r, dep_up_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_up_r))+\
(yy[row_up_r, col_up_r, dep_lr_r]*(weight_row_up_r * weight_col_up_r * weight_dep_lr_r))+\
(yy[row_up_r, col_up_r, dep_up_r]*(weight_row_up_r * weight_col_up_r * weight_dep_up_r))) - y_source)**2 +\
(((zz[row_lr_r, col_lr_r, dep_lr_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_lr_r))+\
(zz[row_lr_r, col_lr_r, dep_up_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_up_r))+\
(zz[row_lr_r, col_up_r, dep_lr_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_lr_r))+\
(zz[row_lr_r, col_up_r, dep_up_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_up_r))+\
(zz[row_up_r, col_lr_r, dep_lr_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_lr_r))+\
(zz[row_up_r, col_lr_r, dep_up_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_up_r))+\
(zz[row_up_r, col_up_r, dep_lr_r]*(weight_row_up_r * weight_col_up_r * weight_dep_lr_r))+\
(zz[row_up_r, col_up_r, dep_up_r]*(weight_row_up_r * weight_col_up_r * weight_dep_up_r))) - z_source)**2)
Dx_array = k[0]*(dist_x**2)+k[1]*dist_x+k[2]
Dx = np.tile(Dx_array[:, np.newaxis, np.newaxis], (1, Ny, Nz))
Dy = Dx
Dz = Dx
#Mesh numbers
beta_zero_x = (2*Dx*dt)/(dx**2) #mesh number in x direction
beta_zero_y = (2*Dy*dt)/(dy**2) #mesh number in x direction
beta_zero_z = (2*Dz*dt)/(dz**2) #mesh number in x direction
beta_zero = beta_zero_x + beta_zero_y + beta_zero_z #beta_zero is the condition for all the directions deltax, deltay and deltaz.
idx_dist1 = np.where(dist_x == 1)[0][1]
idx_dist_nomean = np.where(dist_x == round(mean_free_path))[0][0]
idx_dist3 = np.where(dist_x == 3)[0][0]
#distance between source and each mesh point in the y direction
dist_y = np.sqrt((((xx[row_lr_r, col_lr_r, dep_lr_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_lr_r))+\
(xx[row_lr_r, col_lr_r, dep_up_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_up_r))+\
(xx[row_lr_r, col_up_r, dep_lr_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_lr_r))+\
(xx[row_lr_r, col_up_r, dep_up_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_up_r))+\
(xx[row_up_r, col_lr_r, dep_lr_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_lr_r))+\
(xx[row_up_r, col_lr_r, dep_up_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_up_r))+\
(xx[row_up_r, col_up_r, dep_lr_r]*(weight_row_up_r * weight_col_up_r * weight_dep_lr_r))+\
(xx[row_up_r, col_up_r, dep_up_r]*(weight_row_up_r * weight_col_up_r * weight_dep_up_r))) - x_source)**2 +\
(((yy[row_lr_r, :, dep_lr_r]*(weight_row_lr_r * weight_col_lr_r* weight_dep_lr_r))+\
(yy[row_lr_r, :, dep_up_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_up_r))+\
(yy[row_lr_r, :, dep_lr_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_lr_r))+\
(yy[row_lr_r, :, dep_up_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_up_r))+\
(yy[row_up_r, :, dep_lr_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_lr_r))+\
(yy[row_up_r, :, dep_up_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_up_r))+\
(yy[row_up_r, :, dep_lr_r]*(weight_row_up_r * weight_col_up_r * weight_dep_lr_r))+\
(yy[row_up_r, :, dep_up_r]*(weight_row_up_r * weight_col_up_r * weight_dep_up_r))) - y_source)**2 +\
(((zz[row_lr_r, col_lr_r, dep_lr_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_lr_r))+\
(zz[row_lr_r, col_lr_r, dep_up_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_up_r))+\
(zz[row_lr_r, col_up_r, dep_lr_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_lr_r))+\
(zz[row_lr_r, col_up_r, dep_up_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_up_r))+\
(zz[row_up_r, col_lr_r, dep_lr_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_lr_r))+\
(zz[row_up_r, col_lr_r, dep_up_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_up_r))+\
(zz[row_up_r, col_up_r, dep_lr_r]*(weight_row_up_r * weight_col_up_r * weight_dep_lr_r))+\
(zz[row_up_r, col_up_r, dep_up_r]*(weight_row_up_r * weight_col_up_r * weight_dep_up_r))) - z_source)**2)
#Function to draw figure
##def draw_fig():
## for i in range(w_new.shape[2]):
## print(i)
## plt.figure(2)
## plt.imshow(w_new[:, :, i], cmap='hot', vmin=w_new.min(), vmax=w_new.max())
############################################################################
#TRIAL 4D PLOT
############################################################################
#Initialize the figure and axes
#if tcalc == "decay":
# plt.figure()
# ax = fig.add_subplot(111, projection='3d')
# plt.title("4D plot")
# ax.view_init(elev=30, azim=45) #Set the initial view angle
#%%
###############################################################################
#MAIN CALCULATION - COMPUTING ENERGY DENSITY
###############################################################################
w_new = np.zeros((Nx,Ny,Nz)) #unknown w at new time level (n+1)
w = w_new #w at n level
w_old = w #w_old at n-1 level
w_rec = np.arange(0,recording_time,dt) #energy density at the receiver
w_rec_all = np.zeros((1,len(x)))
curPercent = 0
#Computing w;
for steps in range(0, recording_steps):
#Compute w at inner mesh points
time_steps = steps*dt #total time for the calculation
#In the x direction
w_iminus1 = w[0:Nx-1, 0:Ny, 0:Nz]
w_m_i = (w_iminus1[0,:,:])
w_m_i = np.expand_dims(w_m_i, axis=0) #Expand the dimensions of w_m_i to match the shape of w_iminus1
w_iminus1 = np.concatenate((w_m_i,w_iminus1),axis = 0)
w_iplus1 = w[1:Nx, 0:Ny, 0:Nz]
w_p_i = (w_iplus1[-1,:,:])
w_p_i = np.expand_dims(w_p_i, axis=0) #Expand the dimensions of w_p_i to match the shape of w_iplus1
w_iplus1 = np.concatenate((w_iplus1,w_p_i), axis=0)
#In the y direction
w_jminus1 = w[0:Nx, 0:Ny-1, 0:Nz]
w_m_j = (w_jminus1[:,0,:])
w_m_j = np.expand_dims(w_m_j, axis=1) #Expand the dimensions of w_m_j to match the shape of w_jminus1
w_jminus1 = np.concatenate((w_m_j, w_jminus1), axis=1)
w_jplus1 = w[0:Nx, 1:Ny, 0:Nz]
w_p_j = (w_jplus1[:,-1,:])
w_p_j = np.expand_dims(w_p_j, axis=1) #Expand the dimensions of w_p_j to match the shape of w_jplus1
w_jplus1 = np.concatenate((w_jplus1,w_p_j), axis=1)
#In the z direction
w_kminus1 = w[0:Nx, 0:Ny, 0:Nz-1]
w_m_k = (w_kminus1[:,:,0])
w_m_k = np.expand_dims(w_m_k, axis=2) # Expand the dimensions of w_m_k to match the shape of w_kminus1
w_kminus1 = np.concatenate((w_m_k, w_kminus1), axis=2)
w_kplus1 = w[0:Nx, 0:Ny, 1:Nz]
w_p_k = (w_kplus1[:,:,-1])
w_p_k = np.expand_dims(w_p_k, axis=2) #Expand the dimensions of w_p_k to match the shape of w_kplus1
w_kplus1 = np.concatenate((w_kplus1,w_p_k), axis=2)
#Computing w_new (w at n+1 time step)
w_new = np.divide((np.multiply(w_old,(1-beta_zero))),(1+beta_zero)) - \
np.divide((2*dt*c0*m_atm*w),(1+beta_zero)) + \
np.divide((2*dt*s),(1+beta_zero)) + \
np.divide((np.multiply(beta_zero_x,(w_iplus1+w_iminus1))),(1+beta_zero)) + \
np.divide((np.multiply(beta_zero_y,(w_jplus1+w_jminus1))),(1+beta_zero)) + \
np.divide((np.multiply(beta_zero_z,(w_kplus1+w_kminus1))),(1+beta_zero))
#Insert boundary conditions
w_new[0,:,:] = np.divide((4*w_new[1,:,:] - w_new[2,:,:]),(3+((2*Abs_5*dx)/Dx[0,:,:]))) #boundary condition at x=0, any y, any z
w_new[-1,:,:] = np.divide((4*w_new[-2,:,:] - w_new[-3,:,:]),(3+((2*Abs_6*dx)/Dx[-1,:,:]))) #boundary condition at lx=length, any y, any z
w_new[:,0,:] = np.divide((4*w_new[:,1,:] - w_new[:,2,:]),(3+((2*Abs_3*dx)/Dy[:,0,:]))) #boundary condition at y=0, any x, any z
w_new[:,-1,:] = np.divide((4*w_new[:,-2,:] - w_new[:,-3,:]),(3+((2*Abs_4*dx)/Dy[:,-1,:]))) #boundary condition at at ly=width, any x, any z
w_new[:,:,0] = np.divide((4*w_new[:,:,1] - w_new[:,:,2]),(3+((2*Abs_1*dx)/Dz[:,:,0]))) #boundary condition at z=0, any x, any y
w_new[:,:,-1] = np.divide((4*w_new[:,:,-2] - w_new[:,:,-3]),(3+((2*Abs_2*dx)/Dz[:,:,-1]))) #boundary condition at at lz=height, any x, any y
sdl = 10*np.log10(abs(w_new),where=abs(w_new)>0) #sound density level
spl = 10*np.log10(((abs(w_new))*rho*(c0**2))/(pRef**2)) #,where=press_r>0, sound pressure level in the 3D space
#uncomment when activating the drawnow library
#Visualization of the energy density changes while the calculation is progressing
##if (steps % 100 == 0): #draw only on certain steps and not all the steps
## print("A")
## drawnow(draw_fig)
#Update w before next step
w_old = w #The w at n step becomes the w at n-1 step
w = w_new #The w at n+1 step becomes the w at n step
#w_rec is the energy density at the specific receiver
w_rec[steps] = ((w_new[row_lr_r, col_lr_r, dep_lr_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_lr_r))+\
(w_new[row_lr_r, col_lr_r, dep_up_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_up_r))+\
(w_new[row_lr_r, col_up_r, dep_lr_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_lr_r))+\
(w_new[row_lr_r, col_up_r, dep_up_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_up_r))+\
(w_new[row_up_r, col_lr_r, dep_lr_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_lr_r))+\
(w_new[row_up_r, col_lr_r, dep_up_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_up_r))+\
(w_new[row_up_r, col_up_r, dep_lr_r]*(weight_row_up_r * weight_col_up_r * weight_dep_lr_r))+\
(w_new[row_up_r, col_up_r, dep_up_r]*(weight_row_up_r * weight_col_up_r * weight_dep_up_r)))
if steps == sourceon_steps:
#print("Steps for source:",steps)
w_t0 = w_new
if steps == round(1*mean_free_time_step + sourceon_steps + (dist_sr/c0)):
index_1l = steps
w_1l = w_new
if steps == round(2*mean_free_time_step + sourceon_steps + (dist_sr/c0)):
index_2l = steps
w_2l = w_new
if steps == round(3*mean_free_time_step + sourceon_steps + (dist_sr/c0)):
index_3l = steps
w_3l = w_new
if steps == round(5*mean_free_time_step + sourceon_steps + (dist_sr/c0)):
index_5l = steps
w_5l = w_new
if steps == round(2*longest_dimension_step): #+ sourceon_steps + (dist_sr/c0)):
index_2ld = steps
w_2ld = w_new
if steps == round(4*longest_dimension_step): #+ sourceon_steps + (dist_sr/c0)):
index_4ld = steps
w_4ld = w_new
if steps == sourceon_steps + idx_t35dB:
w_35dB = w_new
#4D Visualization????
#Flatten the coordinates and w_new values for scatter plot
##coords = np.column_stack([xx.ravel(), yy.ravel(), zz.ravel()])
##w_new_flat = w_new.ravel()
#Normalize the w_new values to [0, 1] range
##norm = plt.Normalize(vmin=np.min(w_new_flat), vmax=np.max(w_new_flat))
##colors = cm.jet(norm(w_new_flat)) # Use 'jet' colormap for a range of red to yellow colors
#Update the scatter plot with the new w_new values
##if steps == 0:
## scatter = ax.scatter(coords[:, 0], coords[:, 1], coords[:, 2], c=w_new_flat, cmap='hot')
##else:
## scatter.set_array(w_new_flat)
#Set a suitable title and labels
##ax.set_title("Time Step: 'time_steps'")
##ax.set_xlabel('X')
##ax.set_ylabel('Y')
##ax.set_zlabel('Z')
#Adjust the plot limits
##ax.set_xlim(0, length)
##ax.set_ylim(0, width)
##ax.set_zlim(0, height)
#Add a colorbar and legend
##cbar = fig.colorbar(scatter, ax=ax,fraction=0.04, pad=0.1)
##cbar.set_label('Energy Density')
##cbar.ax.yaxis.set_ticks_position('left')
#Pause to create an animated effect
##plt.pause(0.01) # Adjust the pause duration as needed
#Updating the source term
if tcalc == "decay":
s[row_lr_s, col_lr_s, dep_lr_s] = source1[steps] * (weight_row_lr_s * weight_col_lr_s * weight_dep_lr_s)
s[row_lr_s, col_lr_s, dep_up_s] = source1[steps] * (weight_row_lr_s * weight_col_lr_s * weight_dep_up_s)
s[row_lr_s, col_up_s, dep_lr_s] = source1[steps] * (weight_row_lr_s * weight_col_up_s * weight_dep_lr_s)
s[row_lr_s, col_up_s, dep_up_s] = source1[steps] * (weight_row_lr_s * weight_col_up_s * weight_dep_up_s)
s[row_up_s, col_lr_s, dep_lr_s] = source1[steps] * (weight_row_up_s * weight_col_lr_s * weight_dep_lr_s)
s[row_up_s, col_lr_s, dep_up_s] = source1[steps] * (weight_row_up_s * weight_col_lr_s * weight_dep_up_s)
s[row_up_s, col_up_s, dep_lr_s] = source1[steps] * (weight_row_up_s * weight_col_up_s * weight_dep_lr_s)
s[row_up_s, col_up_s, dep_up_s] = source1[steps] * (weight_row_up_s * weight_col_up_s * weight_dep_up_s)
if tcalc == "stationarysource":
s[row_lr_s, col_lr_s, dep_lr_s] = source1[0] * (weight_row_lr_s * weight_col_lr_s * weight_dep_lr_s)
s[row_lr_s, col_lr_s, dep_up_s] = source1[0] * (weight_row_lr_s * weight_col_lr_s * weight_dep_up_s)
s[row_lr_s, col_up_s, dep_lr_s] = source1[0] * (weight_row_lr_s * weight_col_up_s * weight_dep_lr_s)
s[row_lr_s, col_up_s, dep_up_s] = source1[0] * (weight_row_lr_s * weight_col_up_s * weight_dep_up_s)
s[row_up_s, col_lr_s, dep_lr_s] = source1[0] * (weight_row_up_s * weight_col_lr_s * weight_dep_lr_s)
s[row_up_s, col_lr_s, dep_up_s] = source1[0] * (weight_row_up_s * weight_col_lr_s * weight_dep_up_s)
s[row_up_s, col_up_s, dep_lr_s] = source1[0] * (weight_row_up_s * weight_col_up_s * weight_dep_lr_s)
s[row_up_s, col_up_s, dep_up_s] = source1[0] * (weight_row_up_s * weight_col_up_s * weight_dep_up_s)
percentDone = round(100*time_steps/recording_time);
if (percentDone > curPercent):
print(str(curPercent + 1) + "% done")
curPercent += 1;
#print(time_steps)
plt.show()
w_rec_x_end = ((w_new[:, col_lr_r, dep_lr_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_lr_r))+\
(w_new[:, col_lr_r, dep_up_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_up_r))+\
(w_new[:, col_up_r, dep_lr_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_lr_r))+\
(w_new[:, col_up_r, dep_up_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_up_r))+\
(w_new[:, col_lr_r, dep_lr_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_lr_r))+\
(w_new[:, col_lr_r, dep_up_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_up_r))+\
(w_new[:, col_up_r, dep_lr_r]*(weight_row_up_r * weight_col_up_r * weight_dep_lr_r))+\
(w_new[:, col_up_r, dep_up_r]*(weight_row_up_r * weight_col_up_r * weight_dep_up_r)))
spl_rec_x_end = 10*np.log10(rho*c0**2*w_rec_x_end/pRef**2)
w_rec_x_1l = ((w_1l[:, col_lr_r, dep_lr_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_lr_r))+\
(w_1l[:, col_lr_r, dep_up_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_up_r))+\
(w_1l[:, col_up_r, dep_lr_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_lr_r))+\
(w_1l[:, col_up_r, dep_up_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_up_r))+\
(w_1l[:, col_lr_r, dep_lr_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_lr_r))+\
(w_1l[:, col_lr_r, dep_up_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_up_r))+\
(w_1l[:, col_up_r, dep_lr_r]*(weight_row_up_r * weight_col_up_r * weight_dep_lr_r))+\
(w_1l[:, col_up_r, dep_up_r]*(weight_row_up_r * weight_col_up_r * weight_dep_up_r)))
spl_rec_x_1l = 10*np.log10(rho*c0**2*w_rec_x_1l/pRef**2)
w_rec_x_2l = ((w_2l[:, col_lr_r, dep_lr_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_lr_r))+\
(w_2l[:, col_lr_r, dep_up_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_up_r))+\
(w_2l[:, col_up_r, dep_lr_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_lr_r))+\
(w_2l[:, col_up_r, dep_up_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_up_r))+\
(w_2l[:, col_lr_r, dep_lr_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_lr_r))+\
(w_2l[:, col_lr_r, dep_up_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_up_r))+\
(w_2l[:, col_up_r, dep_lr_r]*(weight_row_up_r * weight_col_up_r * weight_dep_lr_r))+\
(w_2l[:, col_up_r, dep_up_r]*(weight_row_up_r * weight_col_up_r * weight_dep_up_r)))
spl_rec_x_2l = 10*np.log10(rho*c0**2*w_rec_x_2l/pRef**2)
w_rec_x_3l = ((w_3l[:, col_lr_r, dep_lr_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_lr_r))+\
(w_3l[:, col_lr_r, dep_up_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_up_r))+\
(w_3l[:, col_up_r, dep_lr_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_lr_r))+\
(w_3l[:, col_up_r, dep_up_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_up_r))+\
(w_3l[:, col_lr_r, dep_lr_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_lr_r))+\
(w_3l[:, col_lr_r, dep_up_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_up_r))+\
(w_3l[:, col_up_r, dep_lr_r]*(weight_row_up_r * weight_col_up_r * weight_dep_lr_r))+\
(w_3l[:, col_up_r, dep_up_r]*(weight_row_up_r * weight_col_up_r * weight_dep_up_r)))
spl_rec_x_3l = 10*np.log10(rho*c0**2*w_rec_x_3l/pRef**2)
w_rec_x_5l = ((w_5l[:, col_lr_r, dep_lr_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_lr_r))+\
(w_5l[:, col_lr_r, dep_up_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_up_r))+\
(w_5l[:, col_up_r, dep_lr_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_lr_r))+\
(w_5l[:, col_up_r, dep_up_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_up_r))+\
(w_5l[:, col_lr_r, dep_lr_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_lr_r))+\
(w_5l[:, col_lr_r, dep_up_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_up_r))+\
(w_5l[:, col_up_r, dep_lr_r]*(weight_row_up_r * weight_col_up_r * weight_dep_lr_r))+\
(w_5l[:, col_up_r, dep_up_r]*(weight_row_up_r * weight_col_up_r * weight_dep_up_r)))
spl_rec_x_5l = 10*np.log10(rho*c0**2*w_rec_x_5l/pRef**2)
w_rec_x_2ld = ((w_2ld[:, col_lr_r, dep_lr_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_lr_r))+\
(w_2ld[:, col_lr_r, dep_up_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_up_r))+\
(w_2ld[:, col_up_r, dep_lr_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_lr_r))+\
(w_2ld[:, col_up_r, dep_up_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_up_r))+\
(w_2ld[:, col_lr_r, dep_lr_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_lr_r))+\
(w_2ld[:, col_lr_r, dep_up_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_up_r))+\
(w_2ld[:, col_up_r, dep_lr_r]*(weight_row_up_r * weight_col_up_r * weight_dep_lr_r))+\
(w_2ld[:, col_up_r, dep_up_r]*(weight_row_up_r * weight_col_up_r * weight_dep_up_r)))
spl_rec_x_2ld = 10*np.log10(rho*c0**2*w_rec_x_2ld/pRef**2)
w_rec_x_4ld = ((w_4ld[:, col_lr_r, dep_lr_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_lr_r))+\
(w_4ld[:, col_lr_r, dep_up_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_up_r))+\
(w_4ld[:, col_up_r, dep_lr_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_lr_r))+\
(w_4ld[:, col_up_r, dep_up_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_up_r))+\
(w_4ld[:, col_lr_r, dep_lr_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_lr_r))+\
(w_4ld[:, col_lr_r, dep_up_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_up_r))+\
(w_4ld[:, col_up_r, dep_lr_r]*(weight_row_up_r * weight_col_up_r * weight_dep_lr_r))+\
(w_4ld[:, col_up_r, dep_up_r]*(weight_row_up_r * weight_col_up_r * weight_dep_up_r)))
spl_rec_x_4ld = 10*np.log10(rho*c0**2*w_rec_x_4ld/pRef**2)
w_rec_x_t0_no_term = ((w_t0[:, col_lr_r, dep_lr_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_lr_r))+\
(w_t0[:, col_lr_r, dep_up_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_up_r))+\
(w_t0[:, col_up_r, dep_lr_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_lr_r))+\
(w_t0[:, col_up_r, dep_up_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_up_r))+\
(w_t0[:, col_lr_r, dep_lr_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_lr_r))+\
(w_t0[:, col_lr_r, dep_up_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_up_r))+\
(w_t0[:, col_up_r, dep_lr_r]*(weight_row_up_r * weight_col_up_r * weight_dep_lr_r))+\
(w_t0[:, col_up_r, dep_up_r]*(weight_row_up_r * weight_col_up_r * weight_dep_up_r)))#-(Ws/(4*math.pi*Dx[:,0,0]*dist_x)))
w_rec_x_t0 = ((w_t0[:, col_lr_r, dep_lr_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_lr_r))+\
(w_t0[:, col_lr_r, dep_up_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_up_r))+\
(w_t0[:, col_up_r, dep_lr_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_lr_r))+\
(w_t0[:, col_up_r, dep_up_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_up_r))+\
(w_t0[:, col_lr_r, dep_lr_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_lr_r))+\
(w_t0[:, col_lr_r, dep_up_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_up_r))+\
(w_t0[:, col_up_r, dep_lr_r]*(weight_row_up_r * weight_col_up_r * weight_dep_lr_r))+\
(w_t0[:, col_up_r, dep_up_r]*(weight_row_up_r * weight_col_up_r * weight_dep_up_r)))#(Ws/(4*math.pi*Dx*dist_x)))
#w_rec_x_t0 = np.where(dist_x > mean_free_path+5, w_rec_x_t0_no_term, w_rec_x_t0) #dist_x[round(mean_free_path/dx)+row_lr_s]
spl_rec_x_t0 = 10*np.log10(rho*c0**2*w_rec_x_t0/pRef**2)
w_rec_x_t0_nosource1 = w_rec_x_t0[idx_dist1:]
spl_rec_x_t0_nosource1 = 10*np.log10(rho*c0**2*w_rec_x_t0_nosource1/pRef**2)
dist_from1 = dist_x[idx_dist1:]
w_rec_x_t0_nosource3 = w_rec_x_t0[idx_dist3:]
spl_rec_x_t0_nosource3 = 10*np.log10(rho*c0**2*w_rec_x_t0_nosource3/pRef**2)
dist_from3 = dist_x[idx_dist3:]
#Energy density at the time step of -35 dB (so the end of the calculation of RT more or less)
w_rec_x_35dB = ((w_35dB[:, col_lr_r, dep_lr_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_lr_r))+\
(w_35dB[:, col_lr_r, dep_up_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_up_r))+\
(w_35dB[:, col_up_r, dep_lr_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_lr_r))+\
(w_35dB[:, col_up_r, dep_up_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_up_r))+\
(w_35dB[:, col_lr_r, dep_lr_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_lr_r))+\
(w_35dB[:, col_lr_r, dep_up_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_up_r))+\
(w_35dB[:, col_up_r, dep_lr_r]*(weight_row_up_r * weight_col_up_r * weight_dep_lr_r))+\
(w_35dB[:, col_up_r, dep_up_r]*(weight_row_up_r * weight_col_up_r * weight_dep_up_r)))#-(Ws/(4*math.pi*Dx*dist_x)))
spl_rec_35dB = 10*np.log10(rho*c0**2*abs(w_rec_x_35dB)/pRef**2)
w_rec_y_end = ((w_new[row_lr_r, :, dep_lr_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_lr_r))+\
(w_new[row_lr_r, :, dep_up_r]*(weight_row_lr_r * weight_col_lr_r * weight_dep_up_r))+\
(w_new[row_lr_r, :, dep_lr_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_lr_r))+\
(w_new[row_lr_r, :, dep_up_r]*(weight_row_lr_r * weight_col_up_r * weight_dep_up_r))+\
(w_new[row_up_r, :, dep_lr_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_lr_r))+\
(w_new[row_up_r, :, dep_up_r]*(weight_row_up_r * weight_col_lr_r * weight_dep_up_r))+\
(w_new[row_up_r, :, dep_lr_r]*(weight_row_up_r * weight_col_up_r * weight_dep_lr_r))+\
(w_new[row_up_r, :, dep_up_r]*(weight_row_up_r * weight_col_up_r * weight_dep_up_r)))
#%%
###############################################################################
#RESULTS
###############################################################################
spl_stat_x_t0 = 10*np.log10(rho*c0*(((Ws)/(4*math.pi*(dist_x**2))) + ((abs(w_rec_x_t0)*c0)))/(pRef**2)) #with direct sound
spl_stat_x_5l = 10*np.log10(rho*c0**2*w_rec_x_5l/pRef**2)
spl_stat_x_t0_nosource1 = spl_stat_x_t0[idx_dist1:]
spl_stat_x_t0_nosource3 = spl_stat_x_t0[idx_dist3:]
spl_stat_x = 10*np.log10(rho*c0*(((Ws)/(4*math.pi*(dist_x**2))) + ((abs(w_rec_x_end)*c0)))/(pRef**2))
spl_stat_y = 10*np.log10(rho*c0*(((Ws)/(4*math.pi*(dist_y**2))) + ((abs(w_rec_y_end)*c0)))/(pRef**2)) #It should be the spl stationary
press_r = ((abs(w_rec))*rho*(c0**2)) #pressure at the receiver
spl_r = 10*np.log10(((abs(w_rec))*rho*(c0**2))/(pRef**2)) #,where=press_r>0, sound pressure level at the receiver
spl_r_norm = 10*np.log10((((abs(w_rec))*rho*(c0**2))/(pRef**2)) / np.max(((abs(w_rec))*rho*(c0**2))/(pRef**2))) #normalised to maximum to 0dB
spl_r_tot = 10*np.log10(rho*c0*((Ws/(4*math.pi*dist_sr**2))*np.exp(-m_atm*dist_sr) + ((abs(w_rec))*c0)/(pRef**2))) #spl total (including direct field) at the receiver position????? but it will need to be calculated for a stationary source 100dB
#Find the energy decay part of the overal calculation
idx_w_rec = np.where(t == sourceon_time)[0][0] #index at which the t array is equal to the sourceon_time; I want the RT to calculate from when the source stops.
w_rec_off = w_rec[idx_w_rec:] #cutting the energy density array at the receiver from the idx_w_rec to the end
spl_r_off = 10*np.log10(((abs(w_rec_off))*rho*(c0**2))/(pRef**2))
#Impulse response from the energy density
w_rec_off_deriv = w_rec_off #initialising an array of derivative equal to the w_rec_off -> this will be the impulse response after modifying it
w_rec_off_deriv = np.delete(w_rec_off_deriv, 0) #delete the first element of the array -> this means shifting the array one step before and therefore do a derivation
w_rec_off_deriv = np.append(w_rec_off_deriv,0) #add a zero in the last element of the array -> for derivation and to have the same length as previously
impulse = ((w_rec_off - w_rec_off_deriv))/dt#/(rho*c0**2) #This is the difference between the the energy density and the impulse response
spl_r_off_diff = 10*np.log10(((abs(impulse))*rho*(c0**2))/(pRef**2)) #,where=press_r>0, sound pressure level at the receiver
#Schroeder integration
#energy_r_rev = (w_rec_off)[::-1] #reverting the array
#The energy density is related to the pressure with the following relation: w = p^2
#energy_r_rev_cum = np.cumsum(energy_r_rev) #cumulative summation of all the item in the array
schroeder = w_rec_off #energy_r_rev_cum[::-1] #reverting the array again -> creating the schroder decay
sch_db = 10.0 * np.log10(schroeder / max(schroeder)) #level of the array: schroeder decay
if tcalc == "decay":
t60 = t60_decay(t, sch_db, idx_w_rec) #called function for calculation of t60 [s]
#edt = edt_decay(t, sch_db, idx_w_rec) #called function for calculation of edt [s]
#c80 = clarity(t60, V, Eq_A, S, c0, dist_sr) #called function for calculation of c80 [dB]
#d50 = definition(t60, V, Eq_A, S, c0, dist_sr) #called function for calculation of d50 [%]
#ts = centretime(t60, Eq_A, S) #called function for calculation of ts [ms]
et = time.time() #end time
elapsed_time = et - st
#%%
###############################################################################
#FIGURES & POST-PROCESSING
###############################################################################
# if tcalc == "decay":
# #Figure 5: Decay of SPL in the recording_time
# plt.figure(5)
# plt.plot(t, spl_r) # plot sound pressure level with Pref = (2e-5)**5
# plt.title("Figure 5 :SPL over time at the receiver")
# plt.xlabel("t [s]")
# plt.ylabel("SPL [dB]")
# plt.xlim()
# plt.ylim()
# plt.xticks(np.arange(0, recording_time + 0.1, 0.5))
# plt.yticks(np.arange(0, 120, 20))
# #Figure 6: Decay of SPL in the recording_time normalised to maximum 0dB
# plt.figure(6)
# plt.plot(t,spl_r_norm)
# plt.title("Figure 6: Normalised SPL over time at the receiver")
# plt.xlabel("t [s]")
# plt.ylabel("SPL [dB]")
# plt.xlim()
# plt.ylim()
# plt.xticks(np.arange(0, recording_time +0.1, 0.1))
# plt.yticks(np.arange(0, -60, -10))
# #Figure 7: Energy density at the receiver over time
# plt.figure(7)
# plt.plot(t,w_rec)
# plt.title("Figure 7: Energy density over time at the receiver")
# plt.xlabel("t [s]")
# plt.ylabel("Energy density [kg m^-1 s^-2]")
# plt.xlim()
# plt.ylim()
# plt.xticks(np.arange(0, recording_time +0.1, 0.1))
# #Figure 8: Schroeder decay
# plt.figure(8)
# plt.plot(t[idx_w_rec:],sch_db)
# plt.title("Figure 8: Schroeder decay (Energy Decay Curve)")
# plt.xlabel("t [s]")
# plt.ylabel("Energy decay [dB]")
# plt.xlim()
# plt.ylim()
# #plt.xticks(np.arange(t, recording_time +0.1, 0.1))
# #Figure 9: 2D image of the energy density in the room
# w_new_2d = w_new[:,:,dep_up_r] #The 3D w_new array is slised at the the desired z level
# plt.figure(9)
# plt.imshow(w_new_2d, origin='lower', extent=[x[0], x[-1], y[0], y[-1]], aspect='equal') #plot with the extent being the room dimension x and y
# plt.colorbar(label='Energy Density [kg/ms^2]')
# plt.xlabel('X [m]')
# plt.ylabel('Y [m]')
# plt.title('Figure 9: Energy Density at Z = z_rec and t = recording_time')
# plt.show()
# #Figure 10: 2D image of the SDL in the room
# sdl_2d = sdl[:,:,dep_up_r] #The 3D w_new array is slised at the the desired z level
# plt.figure(10)
# plt.imshow(sdl_2d, origin='lower', extent=[x[0], x[-1], y[0], y[-1]], aspect='equal') #plot with the extent being the room dimension x and y
# plt.colorbar(label='Sound Density Level [dB]')
# plt.xlabel('X [m]')
# plt.ylabel('Y [m]')
# plt.title('Figure 10: Sound Density level at Z = z_rec and t = recording_time')
# plt.show()
# #Figure 11: 2D image of the SPL in the room
# spl_2d = spl[:,:,dep_up_r] #The 3D w_new array is slised at the the desired z level
# plt.figure(11)
# plt.imshow(spl_2d, origin='lower', extent=[x[0], x[-1], y[0], y[-1]], aspect='equal') #plot with the extent being the room dimension x and y
# plt.colorbar(label='Sound Pressure Level [dB]')
# plt.xlabel('X [m]')
# plt.ylabel('Y [m]')
# plt.title('Figure 11: Sound Pressure level at Z = z_rec and t = recording_time')
# plt.show()
# #Figure 12: Energy density at t=recording_time over the space x.
# plt.figure(12)
# plt.title("Figure 12: Energy density over the x axis at t=recording_time")
# plt.plot(x,w_rec_x_end)
# plt.ylabel('$\mathrm{Energy \ Density \ [kg/ms^2]}$')
# plt.xlabel('$\mathrm{Distance \ along \ x \ axis \ [m]}$')
# #Figure 13: Energy density at t=sourceoff_step over the space x.
# plt.figure(13)
# plt.title("Figure 13: Energy density over the x axis at t=0")
# plt.plot(x,w_rec_x_t0)
# plt.ylabel('$\mathrm{Energy \ Density \ [kg/ms^2]}$')
# plt.xlabel('$\mathrm{Distance \ along \ x \ axis \ [m]}$')
# #Figure 14: SPL at t=sourceoff_step over the space x. reverb sound only
# plt.figure(14)
# plt.title("Figure 14: SPL REVERB over the x axis at t=0")
# plt.plot(x,spl_rec_x_t0)
# plt.ylabel('$\mathrm{SPL \ [dB]}$')
# plt.xlabel('$\mathrm{Distance \ along \ x \ axis \ [m]}$')
# #Figure 15: Energy density at t=1*mean_free over the space x.
# plt.figure(15)
# plt.title("Figure 15: Energy density over the x axis at t=1*mean_free_time")
# plt.plot(x,w_rec_x_1l)
# plt.ylabel('$\mathrm{Energy \ Density \ [kg/ms^2]}$')
# plt.xlabel('$\mathrm{Distance \ along \ x \ axis \ [m]}$')
# #Figure 16: SPL at t=1*mean_free over the space x. reverb sound only
# plt.figure(16)
# plt.title("Figure 16: SPL REVERB over the x axis at t=1*mean_free")
# plt.plot(x,spl_rec_x_1l)
# plt.ylabel('$\mathrm{SPL \ [dB]}$')
# plt.xlabel('$\mathrm{Distance \ along \ x \ axis \ [m]}$')
# #Figure 17: Energy density at t=2*mean_free over the space x.
# plt.figure(17)
# plt.title("Figure 17: Energy density over the x axis at t=2*mean_free_time")
# plt.plot(x,w_rec_x_2l)
# plt.ylabel('$\mathrm{Energy \ Density \ [kg/ms^2]}$')
# plt.xlabel('$\mathrm{Distance \ along \ x \ axis \ [m]}$')
# #Figure 18: SPL at t=2*mean_free over the space x. reverb sound only
# plt.figure(18)
# plt.title("Figure 18: SPL REVERB over the x axis at t=2*mean_free")
# plt.plot(x,spl_rec_x_2l)
# plt.ylabel('$\mathrm{SPL \ [dB]}$')
# plt.xlabel('$\mathrm{Distance \ along \ x \ axis \ [m]}$')
# #Figure 19: Energy density at t=3*mean_free over the space x.
# plt.figure(19)
# plt.title("Figure 19: Energy density over the x axis at t=3*mean_free_time")
# plt.plot(x,w_rec_x_3l)
# plt.ylabel('$\mathrm{Energy \ Density \ [kg/ms^2]}$')
# plt.xlabel('$\mathrm{Distance \ along \ x \ axis \ [m]}$')
# #Figure 20: SPL at t=3*mean_free over the space x. reverb sound only
# plt.figure(20)
# plt.title("Figure 20: SPL REVERB over the x axis at t=3*mean_free")
# plt.plot(x,spl_rec_x_3l)
# plt.ylabel('$\mathrm{SPL \ [dB]}$')
# plt.xlabel('$\mathrm{Distance \ along \ x \ axis \ [m]}$')
# #Figure 21: Energy density at t=5*mean_free over the space x.
# plt.figure(21)
# plt.title("Figure 21: Energy density over the x axis at t=5*mean_free_time")
# plt.plot(x,w_rec_x_5l)
# plt.ylabel('$\mathrm{Energy \ Density \ [kg/ms^2]}$')
# plt.xlabel('$\mathrm{Distance \ along \ x \ axis \ [m]}$')
# #Figure 22: SPL at t=5*mean_free over the space x. reverb sound only
# plt.figure(22)
# plt.title("Figure 22: SPL REVERB over the x axis at t=5*mean_free")
# plt.plot(x,spl_rec_x_5l)
# plt.ylabel('$\mathrm{SPL \ [dB]}$')
# plt.xlabel('$\mathrm{Distance \ along \ x \ axis \ [m]}$')
# #Figure 23: Energy density at t=2*ld over the space x.
# plt.figure(23)
# plt.title("Figure 23: Energy density over the x axis at t=2*longest_dimension_time")
# plt.plot(x,w_rec_x_2ld)
# plt.ylabel('$\mathrm{Energy \ Density \ [kg/ms^2]}$')
# plt.xlabel('$\mathrm{Distance \ along \ x \ axis \ [m]}$')
# #Figure 24: SPL at t=2*ld over the space x. reverb sound only
# plt.figure(24)
# plt.title("Figure 24: SPL REVERB over the x axis at t=2*longest_dimension_time")
# plt.plot(x,spl_rec_x_2ld)
# plt.ylabel('$\mathrm{SPL \ [dB]}$')
# plt.xlabel('$\mathrm{Distance \ along \ x \ axis \ [m]}$')
# #Figure 25: Energy density at t=4*ld over the space x.
# plt.figure(25)
# plt.title("Figure 25: Energy density over the x axis at t=4*longest_dimension_time")
# plt.plot(x,w_rec_x_4ld)
# plt.ylabel('$\mathrm{Energy \ Density \ [kg/ms^2]}$')
# plt.xlabel('$\mathrm{Distance \ along \ x \ axis \ [m]}$')
# #Figure 26: SPL at t=4*ld over the space x. reverb sound only
# plt.figure(26)
# plt.title("Figure 26: SPL REVERB over the x axis at t=4*longest_dimension_time")
# plt.plot(x,spl_rec_x_4ld)
# plt.ylabel('$\mathrm{SPL \ [dB]}$')
# plt.xlabel('$\mathrm{Distance \ along \ x \ axis \ [m]}$')
# if tcalc == "stationarysource":
# #Figure 3: Decay of SPL in the recording_time at the receiver
# plt.figure(3)
# plt.plot(t,spl_r) #plot sound pressure level with Pref = (2e-5)**5
# plt.title("Figure 3: SPL over time at the receiver")
# plt.xlabel("t [s]")
# plt.ylabel("SPL [dB]")
# plt.xlim()
# plt.ylim()
# plt.xticks(np.arange(0, recording_time +0.1, 0.5))
# #plt.yticks(np.arange(0, 120, 20))
# #Figure 4: Decay of SPL in the recording_time normalised to maximum 0dB
# plt.figure(4)
# plt.title("Figure 4: Normalised SPL over time at the receiver")
# plt.plot(t,spl_r_norm)
# plt.xlabel("t [s]")
# plt.ylabel("SPL [dB]")
# plt.xlim()
# plt.ylim()
# plt.xticks(np.arange(0, recording_time +0.1, 0.1))
# plt.yticks(np.arange(0, -60, -10))
# #Figure 5: Energy density over time at the receiver
# plt.figure(5)
# plt.title("Figure 5: Energy density over time at the receiver")
# plt.plot(t,w_rec)
# plt.ylabel('$\mathrm{Energy \ Density \ [kg/ms^2]}$')
# plt.xlabel("t [s]")
# #Figure 6: Sound pressure level stationary over the space y.
# plt.figure(6)
# t_dim = len(t)
# last_time_index = t_dim-1
# #spl_y = spl_stat[rows_r,:,dept_r]
# spl_y = spl_stat_y
# data_y = spl_y
# plt.title("Figure 6: SPL over the y axis")
# plt.plot(y,data_y)
# #plt.xticks(np.arange(0, 20, 5))
# #plt.yticks(np.arange(75, 105, 5))
# plt.ylabel('$\mathrm{Sound \ Pressure\ Level \ [dB]}$')
# plt.xlabel('$\mathrm{Distance \ along \ y \ axis \ [m]}$')
# #Figure 7: Sound pressure level stationary over the space x.
# plt.figure(7)
# t_dim = len(t)
# last_time_index = t_dim-1
# spl_x = spl_stat_x
# data_x = spl_x
# plt.title("Figure 7: SPL over the x axis")
# plt.plot(x,data_x)
# #plt.xticks(np.arange(0, 35, 5))
# #plt.yticks(np.arange(90, 97, 1))
# plt.ylabel('$\mathrm{Sound \ Pressure \ Level \ [dB]}$')
# plt.xlabel('$\mathrm{Distance \ along \ x \ axis \ [m]}$')
# #Figure 8: Energy density at t=recording_time over the space x.
# plt.figure(8)
# plt.title("Figure 8: Energy density over the x axis at t=recording_time")
# plt.plot(x,w_rec_x_end)
# plt.ylabel('$\mathrm{Energy \ Density \ [kg/ms^2]}$')
# plt.xlabel('$\mathrm{Distance \ along \ x \ axis \ [m]}$')
#%%
###############################################################################
#SAVING
###############################################################################
#np.save('results_diff_imp\\spl_r_off',spl_r_off)
#np.save('results_diff_imp\\spl_r_off_diff',spl_r_off_diff)
#np.save('results_diff_imp\\spl_rec_x_t0',spl_rec_x_t0)
#np.save('results_diff_imp\\spl_rec_35dB',spl_rec_35dB)
#np.save('results_diff_imp\\D_th',D_th)
#np.save('results_diff_imp\\x_axis',x)
#np.save('results_diff_imp\\t_off',t[idx_w_rec:])
return spl_rec_x_t0, Dx