-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSolver.py
492 lines (396 loc) · 20.5 KB
/
Solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
from VRPmodel import *
import timeit
class RelocationMove(object):
def __init__(self):
self.originRoutePosition = None
self.targetRoutePosition = None
self.originNodePosition = None
self.targetNodePosition = None
self.costChangeOriginRt = None
self.costChangeTargetRt = None
self.moveCost = None
def Initialize(self):
self.originRoutePosition = None
self.targetRoutePosition = None
self.originNodePosition = None
self.targetNodePosition = None
self.costChangeOriginRt = None
self.costChangeTargetRt = None
self.moveCost = 10 ** 9
class SwapMove(object):
def __init__(self):
self.positionOfFirstRoute = None
self.positionOfSecondRoute = None
self.positionOfFirstNode = None
self.positionOfSecondNode = None
self.costChangeFirstRt = None
self.costChangeSecondRt = None
self.moveCost = None
def Initialize(self):
self.positionOfFirstRoute = None
self.positionOfSecondRoute = None
self.positionOfFirstNode = None
self.positionOfSecondNode = None
self.costChangeFirstRt = None
self.costChangeSecondRt = None
self.moveCost = 10 ** 9
class TwoOptMove(object):
def __init__(self):
self.positionOfFirstRoute = None
self.positionOfSecondRoute = None
self.positionOfFirstNode = None
self.positionOfSecondNode = None
self.moveCost = None
def Initialize(self):
self.positionOfFirstRoute = None
self.positionOfSecondRoute = None
self.positionOfFirstNode = None
self.positionOfSecondNode = None
self.moveCost = 10 ** 9
class Solver2:
def __init__(self, m, sol):
self.allNodes = m.allNodes
self.service_locations = m.service_locations
self.depot = m.allNodes[0]
self.distanceMatrix = m.time_matrix
self.capacity = 3000
self.sol = sol
self.model = m
self.bestSolution = None
self.searchTrajectory = []
def zeroCostTowardsDepot(self):
for i in range(0, len(self.allNodes)):
self.distanceMatrix[i][0] = 0
for j in range(0, len(self.sol.trucks)):
self.sol.trucks[j].AddNode(self.depot)
def removeDepotReturn(self):
for j in range(0, len(self.sol.trucks)):
del self.sol.trucks[j].nodesOnRoute[-1]
def solve(self, start):
self.VND(start)
self.removeDepotReturn()
return self.sol
def VND(self, start):
self.zeroCostTowardsDepot()
self.bestSolution = self.cloneSolution(self.sol)
VNDIterator = 0
kmax = 3
rm = RelocationMove()
sm = SwapMove()
top = TwoOptMove()
neighborhoodTypeDict = {self.FindBestRelocationMove: rm, self.FindBestSwapMove: sm, self.FindBestTwoOptMove: top}
tabu = False
tabusize = 5
tabulist = []
k = 1
neighborhoodTypeOrder = [self.FindBestSwapMove, self.FindBestTwoOptMove, self.FindBestRelocationMove]
while k <= kmax and (timeit.default_timer() - start) <= 300 and not tabu:
self.InitializeOperators(rm, sm, top)
moveTypeToApply = neighborhoodTypeOrder[k-1]
moveStructure = neighborhoodTypeDict[moveTypeToApply]
bestNeighbor, moveCost = self.FindBestNeighbor(moveTypeToApply, moveStructure)
if bestNeighbor is not None and moveCost < 0.0:
self.ApplyMove(moveStructure)
self.TestSolution()
k = 1
if (self.sol.max_travel_time < self.bestSolution.max_travel_time):
self.bestSolution = self.cloneSolution(self.sol)
totalC = self.CalculateTotalCost(self.sol)
if totalC in tabulist:
tabu = True
tabulist.insert(0, totalC)
if len(tabulist) > 5:
tabulist.pop()
VNDIterator = VNDIterator + 1
else:
k = k + 1
self.searchTrajectory.append(self.sol.max_travel_time)
def FindBestNeighbor(self, moveTypeToApply, moveStructure):
bestNeighbor = None
moveTypeToApply(moveStructure)
if isinstance(moveStructure, RelocationMove):
bestNeighbor = moveStructure.originRoutePosition
elif isinstance(moveStructure, SwapMove):
bestNeighbor = moveStructure.positionOfFirstRoute
elif isinstance(moveStructure, TwoOptMove):
bestNeighbor = moveStructure.positionOfFirstRoute
return bestNeighbor, moveStructure.moveCost
def ApplyMove(self, moveStructure):
if isinstance(moveStructure, RelocationMove):
self.ApplyRelocationMove(moveStructure)
elif isinstance(moveStructure, SwapMove):
self.ApplySwapMove(moveStructure)
elif isinstance(moveStructure, TwoOptMove):
self.ApplyTwoOptMove(moveStructure)
def cloneRoute(self, rt:Truck):
cloned = Truck()
cloned.AddNode(self.depot)
cloned.travel_time = rt.travel_time
cloned.kgOnTruck = rt.kgOnTruck
cloned.nodesOnRoute = rt.nodesOnRoute.copy()
return cloned
def cloneSolution(self, sol: Solution):
cloned = Solution()
for i in range (0, len(sol.trucks)):
rt = sol.trucks[i]
clonedRoute = self.cloneRoute(rt)
cloned.trucks.append(clonedRoute)
cloned.travel_time = self.sol.max_travel_time
return cloned
def FindBestRelocationMove(self, rm):
for originRouteIndex in range(0, len(self.sol.trucks)):
rt1:Truck = self.sol.trucks[originRouteIndex]
for targetRouteIndex in range(0, len(self.sol.trucks)):
rt2:Truck = self.sol.trucks[targetRouteIndex]
for originNodeIndex in range(1, len(rt1.nodesOnRoute) - 1):
for targetNodeIndex in range(0, len(rt2.nodesOnRoute) - 1):
if originRouteIndex == targetRouteIndex and (targetNodeIndex == originNodeIndex or targetNodeIndex == originNodeIndex - 1):
continue
A = rt1.nodesOnRoute[originNodeIndex - 1]
B = rt1.nodesOnRoute[originNodeIndex]
C = rt1.nodesOnRoute[originNodeIndex + 1]
F = rt2.nodesOnRoute[targetNodeIndex]
G = rt2.nodesOnRoute[targetNodeIndex + 1]
if rt1 != rt2:
if rt2.kgOnTruck + B.demand > 3000:
continue
costAdded = self.distanceMatrix[A.id][C.id] + self.distanceMatrix[F.id][B.id] + self.distanceMatrix[B.id][G.id]
costRemoved = self.distanceMatrix[A.id][B.id] + self.distanceMatrix[B.id][C.id] + self.distanceMatrix[F.id][G.id]
originRtCostChange = self.distanceMatrix[A.id][C.id] - self.distanceMatrix[A.id][B.id] - self.distanceMatrix[B.id][C.id]
targetRtCostChange = self.distanceMatrix[F.id][B.id] + self.distanceMatrix[B.id][G.id] - self.distanceMatrix[F.id][G.id]
moveCost = costAdded - costRemoved
if (moveCost < rm.moveCost) and abs(moveCost) > 0.0001:
self.StoreBestRelocationMove(originRouteIndex, targetRouteIndex, originNodeIndex, targetNodeIndex, moveCost, originRtCostChange, targetRtCostChange, rm)
return rm.originRoutePosition
def FindBestSwapMove(self, sm):
for firstRouteIndex in range(0, len(self.sol.trucks)):
rt1:Truck = self.sol.trucks[firstRouteIndex]
for secondRouteIndex in range(firstRouteIndex, len(self.sol.trucks)):
rt2:Truck = self.sol.trucks[secondRouteIndex]
for firstNodeIndex in range(1, len(rt1.nodesOnRoute) - 1):
startOfSecondNodeIndex = 1
if rt1 == rt2:
startOfSecondNodeIndex = firstNodeIndex + 1
for secondNodeIndex in range(startOfSecondNodeIndex, len(rt2.nodesOnRoute) - 1):
a1 = rt1.nodesOnRoute[firstNodeIndex - 1]
b1 = rt1.nodesOnRoute[firstNodeIndex]
c1 = rt1.nodesOnRoute[firstNodeIndex + 1]
a2 = rt2.nodesOnRoute[secondNodeIndex - 1]
b2 = rt2.nodesOnRoute[secondNodeIndex]
c2 = rt2.nodesOnRoute[secondNodeIndex + 1]
moveCost = None
costChangeFirstRoute = None
costChangeSecondRoute = None
if rt1 == rt2:
if firstNodeIndex == secondNodeIndex - 1:
costRemoved = self.distanceMatrix[a1.id][b1.id] + self.distanceMatrix[b1.id][b2.id] + self.distanceMatrix[b2.id][c2.id]
costAdded = self.distanceMatrix[a1.id][b2.id] + self.distanceMatrix[b2.id][b1.id] + self.distanceMatrix[b1.id][c2.id]
moveCost = costAdded - costRemoved
else:
costRemoved1 = self.distanceMatrix[a1.id][b1.id] + self.distanceMatrix[b1.id][c1.id]
costAdded1 = self.distanceMatrix[a1.id][b2.id] + self.distanceMatrix[b2.id][c1.id]
costRemoved2 = self.distanceMatrix[a2.id][b2.id] + self.distanceMatrix[b2.id][c2.id]
costAdded2 = self.distanceMatrix[a2.id][b1.id] + self.distanceMatrix[b1.id][c2.id]
moveCost = costAdded1 + costAdded2 - (costRemoved1 + costRemoved2)
else:
if rt1.kgOnTruck - b1.demand + b2.demand > self.capacity:
continue
if rt2.kgOnTruck - b2.demand + b1.demand > self.capacity:
continue
costRemoved1 = self.distanceMatrix[a1.id][b1.id] + self.distanceMatrix[b1.id][c1.id]
costAdded1 = self.distanceMatrix[a1.id][b2.id] + self.distanceMatrix[b2.id][c1.id]
costRemoved2 = self.distanceMatrix[a2.id][b2.id] + self.distanceMatrix[b2.id][c2.id]
costAdded2 = self.distanceMatrix[a2.id][b1.id] + self.distanceMatrix[b1.id][c2.id]
costChangeFirstRoute = costAdded1 - costRemoved1
costChangeSecondRoute = costAdded2 - costRemoved2
moveCost = costAdded1 + costAdded2 - (costRemoved1 + costRemoved2)
if moveCost < sm.moveCost and abs(moveCost) > 0.0001:
self.StoreBestSwapMove(firstRouteIndex, secondRouteIndex, firstNodeIndex, secondNodeIndex, moveCost, costChangeFirstRoute, costChangeSecondRoute, sm)
def ApplyRelocationMove(self, rm: RelocationMove):
oldCost = self.CalculateTotalCost(self.sol)
originRt = self.sol.trucks[rm.originRoutePosition]
targetRt = self.sol.trucks[rm.targetRoutePosition]
B = originRt.nodesOnRoute[rm.originNodePosition]
if originRt == targetRt:
del originRt.nodesOnRoute[rm.originNodePosition]
if (rm.originNodePosition < rm.targetNodePosition):
targetRt.nodesOnRoute.insert(rm.targetNodePosition, B)
else:
targetRt.nodesOnRoute.insert(rm.targetNodePosition + 1, B)
originRt.travel_time += rm.moveCost
else:
del originRt.nodesOnRoute[rm.originNodePosition]
targetRt.nodesOnRoute.insert(rm.targetNodePosition + 1, B)
originRt.travel_time += rm.costChangeOriginRt
targetRt.travel_time += rm.costChangeTargetRt
originRt.kgOnTruck -= B.demand
targetRt.kgOnTruck += B.demand
self.sol.CalculateMaxTravelTime(self.model)
newCost = self.CalculateTotalCost(self.sol)
#debuggingOnly
if abs((newCost - oldCost) - rm.moveCost) > 0.0001:
print('Cost Issue')
def CalculateTotalCost(self, sol):
c = 0
for i in range (0, len(sol.trucks)):
rt = sol.trucks[i]
for j in range (0, len(rt.nodesOnRoute) - 1):
a = rt.nodesOnRoute[j]
b = rt.nodesOnRoute[j + 1]
c += self.distanceMatrix[a.id][b.id]
return c
def ApplySwapMove(self, sm):
oldCost = self.CalculateTotalCost(self.sol)
rt1 = self.sol.trucks[sm.positionOfFirstRoute]
rt2 = self.sol.trucks[sm.positionOfSecondRoute]
b1 = rt1.nodesOnRoute[sm.positionOfFirstNode]
b2 = rt2.nodesOnRoute[sm.positionOfSecondNode]
rt1.nodesOnRoute[sm.positionOfFirstNode] = b2
rt2.nodesOnRoute[sm.positionOfSecondNode] = b1
if (rt1 == rt2):
rt1.travel_time += sm.moveCost
else:
rt1.travel_time += sm.costChangeFirstRt
rt2.travel_time += sm.costChangeSecondRt
rt1.kgOnTruck = rt1.kgOnTruck - b1.demand + b2.demand
rt2.kgOnTruck = rt2.kgOnTruck + b1.demand - b2.demand
self.sol.CalculateMaxTravelTime(self.model)
newCost = self.CalculateTotalCost(self.sol)
# debuggingOnly
if abs((newCost - oldCost) - sm.moveCost) > 0.0001:
print('Cost Issue')
def ReportSolution(self, sol):
for i in range(0, len(sol.trucks)):
rt = sol.trucks[i]
for j in range(0, len(rt.nodesOnRoute)):
print(rt.nodesOnRoute[j].id, end=' ')
print(rt.travel_time)
print (self.sol.max_travel_time)
def StoreBestRelocationMove(self, originRouteIndex, targetRouteIndex, originNodeIndex, targetNodeIndex, moveCost, originRtCostChange, targetRtCostChange, rm:RelocationMove):
rm.originRoutePosition = originRouteIndex
rm.originNodePosition = originNodeIndex
rm.targetRoutePosition = targetRouteIndex
rm.targetNodePosition = targetNodeIndex
rm.costChangeOriginRt = originRtCostChange
rm.costChangeTargetRt = targetRtCostChange
rm.moveCost = moveCost
def StoreBestSwapMove(self, firstRouteIndex, secondRouteIndex, firstNodeIndex, secondNodeIndex, moveCost, costChangeFirstRoute, costChangeSecondRoute, sm):
sm.positionOfFirstRoute = firstRouteIndex
sm.positionOfSecondRoute = secondRouteIndex
sm.positionOfFirstNode = firstNodeIndex
sm.positionOfSecondNode = secondNodeIndex
sm.costChangeFirstRt = costChangeFirstRoute
sm.costChangeSecondRt = costChangeSecondRoute
sm.moveCost = moveCost
def InitializeOperators(self, rm, sm, top):
rm.Initialize()
sm.Initialize()
top.Initialize()
def FindBestTwoOptMove(self, top):
for rtInd1 in range(0, len(self.sol.trucks)):
rt1:Truck = self.sol.trucks[rtInd1]
for rtInd2 in range(rtInd1, len(self.sol.trucks)):
rt2:Truck = self.sol.trucks[rtInd2]
for nodeInd1 in range(0, len(rt1.nodesOnRoute) - 1):
start2 = 0
if (rt1 == rt2):
start2 = nodeInd1 + 2
for nodeInd2 in range(start2, len(rt2.nodesOnRoute) - 1):
moveCost = 10 ** 9
A = rt1.nodesOnRoute[nodeInd1]
B = rt1.nodesOnRoute[nodeInd1 + 1]
K = rt2.nodesOnRoute[nodeInd2]
L = rt2.nodesOnRoute[nodeInd2 + 1]
if rt1 == rt2:
if nodeInd1 == 0 and nodeInd2 == len(rt1.nodesOnRoute) - 2:
continue
costAdded = self.distanceMatrix[A.id][K.id] + self.distanceMatrix[B.id][L.id]
costRemoved = self.distanceMatrix[A.id][B.id] + self.distanceMatrix[K.id][L.id]
moveCost = costAdded - costRemoved
else:
if nodeInd1 == 0 and nodeInd2 == 0:
continue
if nodeInd1 == len(rt1.nodesOnRoute) - 2 and nodeInd2 == len(rt2.nodesOnRoute) - 2:
continue
if self.CapacityIsViolated(rt1, nodeInd1, rt2, nodeInd2):
continue
costAdded = self.distanceMatrix[A.id][L.id] + self.distanceMatrix[B.id][K.id]
costRemoved = self.distanceMatrix[A.id][B.id] + self.distanceMatrix[K.id][L.id]
moveCost = costAdded - costRemoved
if moveCost < top.moveCost and abs(moveCost) > 0.0001:
self.StoreBestTwoOptMove(rtInd1, rtInd2, nodeInd1, nodeInd2, moveCost, top)
def CapacityIsViolated(self, rt1, nodeInd1, rt2, nodeInd2):
rt1FirstSegmentLoad = 0
for i in range(0, nodeInd1 + 1):
n = rt1.nodesOnRoute[i]
rt1FirstSegmentLoad += n.demand
rt1SecondSegmentLoad = rt1.kgOnTruck - rt1FirstSegmentLoad
rt2FirstSegmentLoad = 0
for i in range(0, nodeInd2 + 1):
n = rt2.nodesOnRoute[i]
rt2FirstSegmentLoad += n.demand
rt2SecondSegmentLoad = rt2.kgOnTruck - rt2FirstSegmentLoad
if (rt1FirstSegmentLoad + rt2SecondSegmentLoad > 3000):
return True
if (rt2FirstSegmentLoad + rt1SecondSegmentLoad > 3000):
return True
return False
def StoreBestTwoOptMove(self, rtInd1, rtInd2, nodeInd1, nodeInd2, moveCost, top):
top.positionOfFirstRoute = rtInd1
top.positionOfSecondRoute = rtInd2
top.positionOfFirstNode = nodeInd1
top.positionOfSecondNode = nodeInd2
top.moveCost = moveCost
def ApplyTwoOptMove(self, top):
rt1:Truck = self.sol.trucks[top.positionOfFirstRoute]
rt2:Truck = self.sol.trucks[top.positionOfSecondRoute]
if rt1 == rt2:
# Reverses the nodes in the segment [positionOfFirstNode + 1, top.positionOfSecondNode]
reversedSegment = reversed(rt1.nodesOnRoute[top.positionOfFirstNode + 1: top.positionOfSecondNode + 1])
#lst = list(reversedSegment)
#lst2 = list(reversedSegment)
rt1.nodesOnRoute[top.positionOfFirstNode + 1 : top.positionOfSecondNode + 1] = reversedSegment
#reversedSegmentList = list(reversed(rt1.nodesOnRoute[top.positionOfFirstNode + 1: top.positionOfSecondNode + 1]))
#rt1.nodesOnRoute[top.positionOfFirstNode + 1: top.positionOfSecondNode + 1] = reversedSegmentList
rt1.travel_time += top.moveCost
else:
# Slice with the nodes from position top.positionOfFirstNode + 1 onwards
relocatedSegmentOfRt1 = rt1.nodesOnRoute[top.positionOfFirstNode + 1 :]
# Slice with the nodes from position top.positionOfFirstNode + 1 onwards
relocatedSegmentOfRt2 = rt2.nodesOnRoute[top.positionOfSecondNode + 1 :]
del rt1.nodesOnRoute[top.positionOfFirstNode + 1 :]
del rt2.nodesOnRoute[top.positionOfSecondNode + 1 :]
rt1.nodesOnRoute.extend(relocatedSegmentOfRt2)
rt2.nodesOnRoute.extend(relocatedSegmentOfRt1)
self.UpdateRouteCostAndLoad(rt1)
self.UpdateRouteCostAndLoad(rt2)
self.sol.CalculateMaxTravelTime(self.model)
def UpdateRouteCostAndLoad(self, rt: Truck):
tc = 0
tl = 0
for i in range(0, len(rt.nodesOnRoute) - 1):
A = rt.nodesOnRoute[i]
B = rt.nodesOnRoute[i+1]
tc += self.distanceMatrix[A.id][B.id]
tl += B.demand
rt.kgOnTruck = tl
rt.travel_time = tc
def TestSolution(self):
totalSolCost = 0
for r in range (0, len(self.sol.trucks)):
rt: Truck = self.sol.trucks[r]
rtCost = 0
rtLoad = 0
for n in range (0 , len(rt.nodesOnRoute) - 1):
A = rt.nodesOnRoute[n]
B = rt.nodesOnRoute[n + 1]
rtCost += self.distanceMatrix[A.id][B.id]
rtLoad += B.demand
if abs(rtCost - rt.travel_time) > 0.0001:
print ('Route Cost problem')
if rtLoad != rt.kgOnTruck:
print ('Route Load problem')
if rt.travel_time > totalSolCost:
totalSolCost = rt.travel_time
if abs(totalSolCost - self.sol.max_travel_time) > 0.0001:
print('Solution Cost problem')