-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdotav1.py
56 lines (56 loc) · 2.05 KB
/
dotav1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# dataset settings
dataset_type = 'DOTADataset'
# data_root = '/data2/dailh/dota1-1024-ms/'
# data_root = '/data2/dailh/split_1024_dota1_0/'
data_root = '/data2/dailh/split_ms_dota1_0/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='RResize', img_scale=(1024, 1024)),
dict(type='RRandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1024, 1024),
flip=False,
transforms=[
dict(type='RResize'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img'])
])
]
data = dict(
samples_per_gpu=4,
workers_per_gpu=2,
train=dict(
type=dataset_type,
# ann_file=data_root + 'trainval1024_ms/DOTA_trainval1024_ms.json',
ann_file=data_root + 'trainval/annfiles/',
img_prefix=data_root + 'trainval/images/',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=data_root + 'trainval/annfiles/',
img_prefix=data_root + 'trainval/images/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
# ann_file='/data2/dailh/split_1024_dota1_0/test/' + 'images/',
# img_prefix='/data2/dailh/split_1024_dota1_0/test/' + 'images/',
# ann_file=data_root + 'trainval/annfiles/',
# # img_prefix=data_root + 'trainval/images/',
ann_file=data_root + 'test/images/',
img_prefix=data_root + 'test/images/',
# ann_file=data_root + 'trainval/annfiles/',
# img_prefix=data_root + 'trainval/images/',
pipeline=test_pipeline))