-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathquant.py
409 lines (349 loc) · 14.5 KB
/
quant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import argparse
import copy
import collections
import os
from typing import List, Tuple
import itertools
import numpy as np
import onnx
from onnx import shape_inference, optimizer
qmin = 0
qmax = 255
maxs = {}
mins = {}
scales = {}
zps = {}
class OrderedSet(collections.Set):
'''
Althought there is a warning that
"Using or importing the ABCs from 'collections' instead of
from 'collections.abc' is deprecated, and in 3.8 it will
stop working"
but it is caused by python's own code, so just ignore it
'''
def __init__(self, iterable=()):
self.d = collections.OrderedDict.fromkeys(iterable)
def __len__(self):
return len(self.d)
def __contains__(self, element):
return element in self.d
def __iter__(self):
return iter(self.d)
def update_scale_and_zp(key, arr):
if key not in maxs:
maxs[key] = np.max(arr)
if key not in mins:
mins[key] = np.min(arr)
maxs[key] = max(maxs[key], np.max(arr))
mins[key] = min(mins[key], np.min(arr))
scales[key] = (maxs[key] - mins[key]) / (qmax - qmin)
zp = qmin - mins[key] / scales[key]
zp = max(qmin, zp)
zp = min(qmax, zp)
zp = int(round(zp))
zps[key] = zp
def argmax(d):
assert isinstance(d, dict)
ret = None
for key in d:
if ret is None or d[key] > d[ret]:
ret = key
return ret
def modify_pb(m: onnx.ModelProto, quant_layers: List[str]) -> None:
"""
Modify proto buffers when all quantization infos are set correctly
:param m: the model
:param quant_layers: layers need to be quantized
"""
for node in m.graph.node:
if node.name not in quant_layers:
continue
if node.op_type == 'Conv':
weight = node.input[1]
if len(node.input) == 3:
bias = node.input[2]
for t in m.graph.initializer:
if t.name == weight:
assert len(t.raw_data) == 0
w = np.array(t.float_data)
w = zps[weight] + w / scales[weight]
w = np.round(np.clip(w, qmin, qmax))
t.raw_data = w.astype(np.uint8).tobytes()
t.data_type = onnx.TensorProto.UINT8
del t.float_data[:]
if len(node.input) == 3 and t.name == bias:
assert len(t.raw_data) == 0
b = np.array(t.float_data)
b /= scales[bias]
t.raw_data = np.round(b).astype(np.int32).tobytes()
t.data_type = onnx.TensorProto.INT32
del t.float_data[:]
def add_features_to_output(m):
del m.graph.output[:]
m.graph.output.extend(m.graph.value_info)
def optimize(m):
passes = ['fuse_bn_into_conv']
m = optimizer.optimize(m, passes)
m = shape_inference.infer_shapes(m)
return m
def set_scales_of_weight(m, quant_layers: List[str]):
for node in m.graph.node:
if node.name not in quant_layers:
continue
if node.op_type == 'Conv':
weight = node.input[1]
for t in m.graph.initializer:
if t.name == weight:
update_scale_and_zp(weight, t.raw_data if len(t.float_data) == 0 else t.float_data)
def get_initializer(m, name):
for t in m.graph.initializer:
if t.name == name:
from onnx import numpy_helper
return numpy_helper.to_array(t)
def make_scales_right(m: onnx.ModelProto, quant_layers: List[str], quant_tensors: List[str]) -> None:
"""
There are some requirement for quantization info, we assert and infer them here
Some layer sequence need multiple runs to make infos right, like concat->conv->relu
The range(3) is set arbitrarily, but it must not be lower than the number of if branch
:param m: the model
:param quant_layers: layers need to be quantized
:param quant_tensors: tensors need to be quantized
"""
for _ in range(3):
for node in m.graph.node:
if node.op_type == 'Relu':
ipt, opt = node.input[0], node.output[0]
if ipt in quant_tensors and opt in quant_tensors:
for l in (scales, zps, mins, maxs):
l[ipt] = l[opt]
elif node.op_type == 'Concat':
assert all([x in quant_tensors for x in node.input]) or all(
[x not in quant_tensors for x in node.input])
if all([x in quant_tensors for x in node.input]):
k = argmax({k: v for (k, v) in scales.items() if k in node.input})
for x in node.input:
for l in (scales, zps, mins, maxs):
l[x] = l[k]
for node in m.graph.node:
if node.name not in quant_layers:
continue
if node.op_type == 'Conv':
ipt, weight, output = node.input[0], node.input[1], node.output[0]
assert scales[ipt] * scales[weight] < scales[output]
def set_quant_info_of_bias(m: onnx.ModelProto, quant_layers: List[str]) -> None:
"""
NNAPI requires scales[bias] equals scales[input]*scales[weight] and zps[scale]=0
:param m: the model
:param quant_layers: layers need to be quantized
"""
for node in m.graph.node:
if node.name not in quant_layers:
continue
if node.op_type == 'Conv':
ipt = node.input[0]
weight = node.input[1]
if len(node.input) == 3:
bias = node.input[2]
zps[bias] = 0
scales[bias] = scales[ipt] * scales[weight]
def get_quant_list(m: onnx.ModelProto, quant_layers: List[str]) -> Tuple[List[str], List[str], Tuple[str, str, str]]:
weights = []
biases = []
three_tuple = []
for node in m.graph.node:
if node.name not in quant_layers:
continue
if node.op_type == 'Conv':
ipt = node.input[0]
weight = node.input[1]
weights.append(weight)
bias = None
if len(node.input) == 3:
bias = node.input[2]
biases.append(bias)
three_tuple.append((ipt, weight, bias))
return weights, biases, three_tuple
def collect_scales_of_features(model: onnx.ModelProto, image_dir: str,
features: List[str] = None, batch_size=56,
num_workers=1, show_cls=False) -> None:
"""
Collect infos of features by running model in onnxruntime
:param model: the model
:param image_dir: the directory of images
:param features: names of features that need to collect, None for all features
:param batch_size: batch size for net forward
:param num_workers: number of thread fetching and preprocessing images
"""
from queue import Queue
import threading
import glob
q = Queue()
def worker(paths):
def read_img(path, norm=True):
import cv2
a = cv2.imread(path)
a = cv2.resize(a, (224, 224))
a = a.astype(np.float32)
a = cv2.cvtColor(a, cv2.COLOR_BGR2RGB)
if norm:
a /= 255
# mean and std for RGB images
a -= [0.485, 0.456, 0.406]
a /= [0.229, 0.224, 0.225]
a = np.moveaxis(a, -1, 0)
return a
for i in range(0, len(paths), batch_size):
xs = np.stack(list(map(lambda x: read_img(x, True), paths[i:i + batch_size])))
q.put(xs)
q.put(None)
image_exts = ['JPEG', 'jpg', 'jpeg', 'png']
filenames = list(itertools.chain(*[glob.glob(os.path.join(image_dir, '**/*.' + ext), recursive=True)
for ext in image_exts]))
import random
random.shuffle(filenames)
filenames = filenames[:10000]
file_num = len(filenames)
num_workers = min((file_num + batch_size - 1) // batch_size, num_workers)
chunk_num = file_num // num_workers
threads = []
for i in range(num_workers):
t = threading.Thread(target=worker, args=((filenames[chunk_num * i:chunk_num * (i + 1)],)))
t.start()
threads.append(t)
import onnxruntime as rt
sess = rt.InferenceSession(model.SerializeToString())
all_outputs = [x.name for x in sess.get_outputs()]
features = all_outputs if features is None else list(OrderedSet(features) & OrderedSet(all_outputs))
i = 0
done_workers = 0
if show_cls:
from collections import defaultdict, Counter
d = defaultdict(int)
while True:
xs = q.get()
if xs is None:
done_workers += 1
if done_workers == num_workers:
break
continue
i += xs.shape[0]
update_scale_and_zp('data', xs)
from collections import OrderedDict
res = OrderedDict(zip(features, sess.run(features, {'data': xs})))
if show_cls:
cls = Counter(res['mobilenetv20_output_pred_fwd'].squeeze(axis=(2,3)).argmax(axis=1))
for key in cls:
d[key] += cls[key]
for key in res:
update_scale_and_zp(key, res[key])
q.task_done()
print("{}/{}".format(i, file_num))
if show_cls:
print(d)
for t in threads:
t.join()
def quant_weight(m: onnx.ModelProto, quant_layers: List[str]) -> None:
"""
quant weights before collecting min and max, for simulating the effect of quantization
:param m: the model
:param quant_layers: layers need to be quantized
"""
for node in m.graph.node:
if node.name not in quant_layers:
continue
if node.op_type == 'Conv':
weight = node.input[1]
for t in m.graph.initializer:
if t.name == weight:
assert len(t.raw_data) == 0
w = np.array(t.float_data)
w = zps[weight] + w / scales[weight]
w = np.round(np.clip(w, qmin, qmax))
w = (w - zps[weight]) * scales[weight]
del t.float_data[:]
t.float_data.extend(w)
def move_raw_to_float(m: onnx.ModelProto) -> None:
"""
values of initializers may be stored in float_data or raw_data, if in raw_data, we move them to float_data
for convenience
:param m: the model
"""
for t in m.graph.initializer:
if t.data_type == onnx.TensorProto.FLOAT:
if len(t.float_data) == 0:
import struct
import itertools
it = struct.iter_unpack('f', t.raw_data)
t.float_data.extend(itertools.chain.from_iterable(it))
t.raw_data = bytes(0)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('model', help='model filename', type=str)
parser.add_argument('table', help='name of the file storing scales and zeropoints', type=str)
parser.add_argument('--image_dir', help='directory storing model input', type=str)
parser.add_argument('--dequantize_after', help='The name of tensor we want to insert dequantize layer after',
type=str, default='')
parser.add_argument('--float_input', help='whether the input of model is float, only for Android 29 (NNAPI 1.2)',
action="store_true")
parser.add_argument('--quantize_after',
help='The name of tensor we want to insert quantize layer after, '
'only for Android 29 (NNAPI 1.2)',
type=str, default='')
parser.add_argument('--batch_size',
help='batch size for net forwarding',
type=int,
default=56)
parser.add_argument('--num_workers',
help='number of threads fetching and preprocessing images',
type=int,
default=1)
args = parser.parse_args()
model_path = args.model
table_name = args.table
float_input = args.float_input
model_dir = os.path.dirname(model_path)
model_name = os.path.basename(model_path)
if not float_input:
assert args.quantize_after == ''
args.quantize_after = 'data'
m: onnx.ModelProto = onnx.load(os.path.join(model_dir, model_name))
move_raw_to_float(m)
m = optimize(m)
model_opt = copy.deepcopy(m)
add_features_to_output(m)
quant_after_tensors = [args.quantize_after]
dequant_after_tensors = [args.dequantize_after]
inferred_quant_tensors, quant_layers = get_quant_layers_and_tensors(m, quant_after_tensors, dequant_after_tensors)
weights, biases, three_tuples = get_quant_list(m, quant_layers)
set_scales_of_weight(m, quant_layers)
quant_weight(m, quant_layers)
collect_scales_of_features(m, args.image_dir, inferred_quant_tensors, args.batch_size, args.num_workers)
make_scales_right(m, quant_layers, inferred_quant_tensors)
set_quant_info_of_bias(m, quant_layers)
modify_pb(model_opt, quant_layers)
with open(table_name, 'w') as f:
for i, key in enumerate(['data'] + inferred_quant_tensors):
# 1 is the number of the following elements, may be channels_num or 0 for scale and zeropoint in the future
f.write('{} {} {} {} {} quant8_asymm\n'.format(key, 1, scales[key], 1, zps[key]))
for i, key in enumerate(weights):
# 1 is the number of the following elements, may be channels_num or 0 for scale and zeropoint in the future
f.write('{} {} {} {} {} quant8_asymm\n'.format(key + "_conv_w", 1, scales[key], 1, zps[key]))
for i, t in enumerate(three_tuples):
if t[2] is None:
continue
# -2 means scales of 2 tensors multiply
f.write('{} -2 {} {} {} int32\n'.format(t[2] + "_conv_b", t[0], t[1] + '_conv_w', 0))
for x in dequant_after_tensors:
f.write('dequantize after: {}'.format(x))
onnx.save(model_opt, os.path.join(model_dir, "quant-" + model_name))
def get_quant_layers_and_tensors(m, quant_after_tensors, dequant_after_tensors):
inferred_quant_tensors = quant_after_tensors[:]
quant_layers = []
for node in m.graph.node:
if node.input[0] in inferred_quant_tensors and node.input[0] not in dequant_after_tensors:
inferred_quant_tensors.extend([x for x in node.output])
quant_layers.append(node.name)
inferred_quant_tensors = list(OrderedSet(inferred_quant_tensors) & OrderedSet([x.name for x in m.graph.output]))
return inferred_quant_tensors, quant_layers
if __name__ == '__main__':
main()