-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpretrain_contrastive.py
executable file
·554 lines (480 loc) · 21.6 KB
/
pretrain_contrastive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
#!/usr/bin/env python
# coding=utf-8
# code adapted from https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue_no_trainer.py
""" fair contrastive pretraining with no trainer."""
import argparse
from errno import EADV
import logging
import math
import os
import random
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import (
Union,
Any,
Dict,
Optional,
List,
)
import torch
import torch.nn.functional as F
import torch.distributed as dist
import datasets
from datasets import load_dataset, load_metric
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
import transformers
from accelerate import Accelerator
from huggingface_hub import Repository
from transformers import (
AdamW,
AutoConfig,
AutoTokenizer,
DataCollatorWithPadding,
PretrainedConfig,
SchedulerType,
default_data_collator,
get_scheduler,
set_seed,
)
from transformers.tokenization_utils_base import PaddingStrategy, PreTrainedTokenizerBase
from transformers.file_utils import get_full_repo_name
from transformers.utils.versions import require_version
from models.bert.modeling_bert import BertForContrastiveLearning
from utils import set_cl_eval_mode
logger = logging.getLogger(__name__)
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
def parse_args():
parser = argparse.ArgumentParser(description="Finetune a transformers model on a text classification task")
parser.add_argument(
"--max_length",
type=int,
default=128,
help=(
"The maximum total input sequence length after tokenization. Sequences longer than this will be truncated,"
" sequences shorter will be padded if `--pad_to_max_lengh` is passed."
),
)
parser.add_argument(
"--pad_to_max_length",
action="store_true",
help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.",
)
parser.add_argument(
"--model_name_or_path",
type=str,
help="Path to pretrained model or model identifier from huggingface.co/models.",
required=True,
)
parser.add_argument(
"--use_slow_tokenizer",
action="store_true",
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=8,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=8,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--logging_steps", type=int, default=1000, help="Number of steps for logging the train loss."
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument(
"--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`."
)
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
# new arguments comes here
parser.add_argument(
"--eval_before_train",
action="store_true",
help="evaluation before training",
)
parser.add_argument(
"--save_model",
action="store_true",
help="save_model or not",
)
parser.add_argument(
"--dataset",
type=str,
default="jigsaw",
choices=["biasbios", "jigsaw-race"],
help="datasets",
)
parser.add_argument(
"--dropout",
type=float,
default=0.1,
help="dropout rate.",
)
parser.add_argument(
"--pooler_type",
type=str,
default="cls",
help="pooler type of contrastive learning",
)
parser.add_argument(
"--temperature",
type=float,
default=0.1,
help="temperature",
)
parser.add_argument(
"--aux_loss_weight",
type=float,
default=1.0,
help="loss_2 weight.",
)
args = parser.parse_args()
# Sanity checks
if args.push_to_hub:
assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed."
assert args.model_name_or_path in ['bert-base-uncased']
return args
def eval_model(model, eval_dataloader, accelerator):
set_cl_eval_mode(model)
with torch.no_grad():
completed_eval_steps = 0
eval_loss_val = torch.tensor(0.0).to(accelerator.device)
eval_loss_1_val = torch.tensor(0.0).to(accelerator.device)
eval_loss_2_val = torch.tensor(0.0).to(accelerator.device)
for eval_step, batch in enumerate(eval_dataloader):
outputs = model(**batch)
eval_loss_val += accelerator.gather(outputs.loss).mean()
eval_loss_1_val += accelerator.gather(outputs.loss_1).mean()
eval_loss_2_val += accelerator.gather(outputs.loss_2).mean()
completed_eval_steps += 1
# log eval loss
log_info: Dict[str, float] = {}
eval_loss_val_scalar = eval_loss_val.item()
eval_loss_1_val_scalar = eval_loss_1_val.item()
eval_loss_2_val_scalar = eval_loss_2_val.item()
# compute loss for each step ang log
log_info['eval_overall_loss'] = round(eval_loss_val_scalar / completed_eval_steps, 6)
log_info['eval_loss_1'] = round(eval_loss_1_val_scalar / completed_eval_steps, 6)
log_info['eval_loss_2'] = round(eval_loss_2_val_scalar / completed_eval_steps, 6)
# log it
logger.info(f"Eval loss: {log_info}")
return eval_loss_val / completed_eval_steps
def main():
args = parse_args()
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
accelerator = Accelerator()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
accelerator.wait_for_everyone()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
handlers=[
logging.FileHandler(os.path.join(args.output_dir, f"train_{args.seed}.log")),
logging.StreamHandler(),
],
)
logger.info(accelerator.state)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# load datasets and tokenizer, and preprocess datasets
if args.dataset == 'biasbios':
from dataset_loading import load_biasbios_for_cl
# load tokenizer and preprocessing the datasets
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path,
use_fast=not args.use_slow_tokenizer
)
processed_dataset, dataset_info = load_biasbios_for_cl(tokenizer, args, accelerator)
id_to_label = dataset_info["id_to_label"]
label_to_id = dataset_info["label_to_id"]
num_labels = dataset_info["num_labels"]
train_dataset = processed_dataset["train"]
val_dataset = processed_dataset["val"]
test_dataset = processed_dataset["test"]
elif args.dataset == 'jigsaw-race':
from dataset_loading import load_jigsaw_race_for_cl
# load tokenizer and preprocessing the datasets
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path,
use_fast=not args.use_slow_tokenizer
)
processed_dataset, dataset_info = load_jigsaw_race_for_cl(tokenizer, args, accelerator)
id_to_label = dataset_info["id_to_label"]
label_to_id = dataset_info["label_to_id"]
num_labels = dataset_info["num_labels"]
train_dataset = processed_dataset["train"]
val_dataset = processed_dataset["val"]
test_dataset = processed_dataset["test"]
else:
raise NotImplementedError
# Load pretrained model and config based on datasets
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
args.model_name_or_path,
num_labels=num_labels
)
# change model configuration if needed (e.g., dropout, etc)
config.attention_probs_dropout_prob = args.dropout
config.hidden_dropout_prob = args.dropout
if args.model_name_or_path == 'bert-base-uncased':
model = BertForContrastiveLearning.from_pretrained(
args.model_name_or_path,
config=config,
model_args=args,
)
else:
raise NotImplementedError
model.config.label2id = label_to_id
model.config.id2label = id_to_label
# # Log a few random samples from the training set:
# for index in random.sample(range(len(train_dataset)), 2):
# # # Log a few random samples from the valid set:
# for index in [33]:
# logger.info(f"Sample {index} of the validation set: {val_dataset[index]}.")
# Log some parameters here!
logger.info(f"parser args : {vars(args)}")
# Data collator
@dataclass
class CLDataCollatorWithPadding:
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = (8 if accelerator.use_fp16 else None)
def __call__(self, features: List[Dict[str, Union[List[int], List[List[int]], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
special_keys = ['input_ids', 'attention_mask', 'token_type_ids']
bs = len(features)
if bs > 0:
num_sent = len(features[0]['input_ids'])
else:
return
flat_features = []
for feature in features:
for i in range(num_sent):
flat_features.append({k: feature[k][i] if k in special_keys else feature[k] for k in feature})
batch = self.tokenizer.pad(
flat_features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
)
batch = {k: batch[k].view(bs, num_sent, -1) if k in special_keys else batch[k].view(bs, num_sent, -1)[:, 0] for k in batch}
if "label" in batch:
batch["labels"] = batch["label"]
del batch["label"]
if "label_ids" in batch:
batch["labels"] = batch["label_ids"]
del batch["label_ids"]
if "protected_group_label" in batch:
batch["protected_group_labels"] = batch["protected_group_label"]
del batch["protected_group_labels"]
return batch
# DataLoaders creation:
if args.pad_to_max_length:
# If padding was already done ot max length, we use the default data collator that will just convert everything
# to tensors.
data_collator = default_data_collator
else:
# Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of
# the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
# of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
data_collator = CLDataCollatorWithPadding(tokenizer)
train_dataloader = DataLoader(
train_dataset,
shuffle=True,
collate_fn=data_collator,
batch_size=args.per_device_train_batch_size,
)
eval_dataloader = DataLoader(
val_dataset,
collate_fn=data_collator,
batch_size=args.per_device_eval_batch_size,
)
test_dataloader = DataLoader(
test_dataset,
collate_fn=data_collator,
batch_size=args.per_device_eval_batch_size,
)
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader, test_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, test_dataloader
)
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
# shorter in multiprocess)
# Scheduler and math around the number of training steps.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
else:
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,
)
if args.gradient_accumulation_steps != 1:
raise ValueError("In the current implementation of CL, "
"we only support gradient_accumulation_steps equal to one. "
"Otherwise it is hard to calculate the exact batch size"
)
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel & distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
if args.eval_before_train:
eval_loss_val = eval_model(model, eval_dataloader, accelerator)
running_loss_val = torch.tensor(0.0).to(accelerator.device)
running_loss_1_val = torch.tensor(0.0).to(accelerator.device)
running_loss_2_val = torch.tensor(0.0).to(accelerator.device)
best_eval_loss_val = eval_loss_val if args.eval_before_train else torch.tensor(float('inf')).to(accelerator.device)
globalstep_last_logged = 0
for epoch in range(args.num_train_epochs):
# train step
model.train()
for step, batch in enumerate(train_dataloader):
outputs = model(**batch)
loss = outputs.loss
loss = loss / args.gradient_accumulation_steps
if dist.is_initialized():
# mean() to average on multi-gpu parallel training
# Follow https://github.com/huggingface/transformers/blob/v4.2.1/src/transformers/trainer.py
loss = loss.mean()
# backward
accelerator.backward(loss)
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
completed_steps += 1
# accumulate value for logging
# NOTE: loss in every process is the same due to allreduce
running_loss_val += loss
running_loss_1_val += outputs.loss_1
running_loss_2_val += outputs.loss_2
# log loss for each interval
if (completed_steps-globalstep_last_logged) % args.logging_steps == 0:
log_info: Dict[str, float] = {}
running_loss_val_scalar = running_loss_val.item()
running_loss_1_val_scalar = running_loss_1_val.item()
running_loss_2_val_scalar = running_loss_2_val.item()
# reset tr_loss to zero
running_loss_val -= running_loss_val
running_loss_1_val -= running_loss_1_val
running_loss_2_val -= running_loss_2_val
# compute loss for each step ang log
log_info['overall_loss'] = round(running_loss_val_scalar / (completed_steps - globalstep_last_logged), 6)
log_info['loss_1'] = round(running_loss_1_val_scalar / (completed_steps - globalstep_last_logged), 6)
log_info['loss_2'] = round(running_loss_2_val_scalar / (completed_steps - globalstep_last_logged), 6)
# update globalstep_last_logged
globalstep_last_logged = completed_steps
# log it
logger.info(f"logging training loss: {log_info}")
if completed_steps >= args.max_train_steps:
break
# eval model on val set after each epoch
eval_loss_val = eval_model(model, eval_dataloader, accelerator)
# save model after each epoch if achieve best eval_loss
if args.output_dir is not None and args.save_model \
and eval_loss_val.item() <= best_eval_loss_val.item():
logger.info(
f"After running {epoch+1} epoch(s), saving model. "
f"Achieving best loss: {eval_loss_val.item()}, "
f"and previous best loss {best_eval_loss_val.item()}"
)
# reset current best loss
best_eval_loss_val = eval_loss_val
# save it
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training")
if __name__ == "__main__":
main()