-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset.py
executable file
·292 lines (244 loc) · 10.3 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import logging
import os
import pandas as pd
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import get_logger
class AdultDataset(Dataset):
"""
The UCI Adult dataset.
"""
def __init__(self, root_dir, phase, tar_attr, priv_attr):
self.tar_attr = tar_attr
self.priv_attr = priv_attr
self.npz_file = os.path.join(root_dir, 'adult_%s_%s.npz' % (tar_attr, priv_attr))
self.data = np.load(self.npz_file)
if phase == "train":
self.X = self.data["x_train"]
self.Y = self.data["y_train"]
self.A = self.data["attr_train"]
elif phase == "test":
self.X = self.data["x_test"]
self.Y = self.data["y_test"]
self.A = self.data["attr_test"]
else:
raise NotImplementedError
self.xdim = self.X.shape[1]
self.ydim = self.Y.shape[1]
self.adim = self.A.shape[1]
if self.ydim != 1:
# one-hot encoding
# change it to regression problem
self.Y = np.argmax(self.Y, axis=1)
self.Y = np.expand_dims(self.Y, -1)
assert self.Y.shape[1] == 1 and len(self.Y.shape) == 2
self.ydim = 1
def __len__(self):
return len(self.X)
def __getitem__(self, idx):
return torch.from_numpy(self.X[idx]).float(), \
torch.from_numpy(self.Y[idx]).float(), \
self.onehot_2_int(torch.from_numpy(self.A[idx]))
def onehot_2_int(self, ts):
if len(ts.shape) == 2: # batch
return torch.argmax(ts, dim=1)
if len(ts.shape) == 1: # one instance
return torch.argmax(ts, dim=0)
raise NotImplementedError
def get_YA_distribution(self):
'''get the the mean Y when in different sensitive groups
'''
A_num_class = self.A.shape[1]
assert A_num_class==2
A_label= np.argmax(self.A, axis=1)
A_0_mean_y = np.mean(self.Y[np.argwhere(A_label == 0).squeeze()])
A_1_mean_y = np.mean(self.Y[np.argwhere(A_label == 1).squeeze()])
return A_0_mean_y, A_1_mean_y
class CrimeDataset(Dataset):
"""
The UCI commit dataset.
"""
def __init__(self, root_dir, phase):
self.npz_file = os.path.join(root_dir, 'communities_crime.npz')
self.data = np.load(self.npz_file)
if phase == "train":
self.X = self.data["x_train"]
self.Y = self.data["y_train"]
self.A = self.data["attr_train"]
elif phase == "test":
self.X = self.data["x_test"]
self.Y = self.data["y_test"]
self.A = self.data["attr_test"]
else:
raise NotImplementedError
self.Y = np.expand_dims(self.Y, axis=-1)
self.xdim = self.X.shape[1]
self.ydim = self.Y.shape[1]
self.adim = 2
def __len__(self):
return len(self.X)
def __getitem__(self, idx):
return torch.from_numpy(self.X[idx]).float(), \
torch.from_numpy(self.Y[idx]).float(), \
self.A[idx]
def get_YA_distribution(self):
'''get the the mean Y when in different sensitive groups
'''
A_num_class = self.adim
assert A_num_class==2
A_label= self.A
A_0_mean_y = np.mean(self.Y[np.argwhere(A_label == 0).squeeze()])
A_1_mean_y = np.mean(self.Y[np.argwhere(A_label == 1).squeeze()])
return A_0_mean_y, A_1_mean_y
class COMPAS(Dataset):
"""
The COMPAS dataset.
"""
def __init__(self, data):
"""
:param data: Numpy array that contains all the data.
"""
# Data, label and sensitive attribute partition.
self.insts = data[:, 1:].astype(np.float32)
self.labels = data[:, 0].astype(np.int64)
self.attrs = data[:, 5].astype(np.int64)
self.xdim = self.insts.shape[1]
self.labels = np.expand_dims(self.labels, axis=-1)
def __len__(self):
return len(self.insts)
def __getitem__(self, idx):
return torch.tensor(self.insts[idx]).float(), \
torch.tensor(self.labels[idx]).float(), \
torch.tensor(self.attrs[idx])
class LawSchoolDataset(Dataset):
"""
The UCI law dataset.
"""
def __init__(self, root_dir, phase):
self.npz_file = os.path.join(root_dir, 'law_school.npz')
self.data = np.load(self.npz_file)
if phase == "train":
self.X = self.data["x_train"]
self.Y = self.data["y_train"]
self.A = self.data["attr_train"]
elif phase == "test":
self.X = self.data["x_test"]
self.Y = self.data["y_test"]
self.A = self.data["attr_test"]
else:
raise NotImplementedError
self.Y = np.expand_dims(self.Y, axis=-1)
self.xdim = self.X.shape[1]
self.ydim = self.Y.shape[1]
self.adim = 2
def __len__(self):
return len(self.X)
def __getitem__(self, idx):
return torch.from_numpy(self.X[idx]).float(), \
torch.from_numpy(self.Y[idx]).float(), \
self.A[idx]
def get_YA_distribution(self):
'''get the the mean Y when in different sensitive groups
'''
A_num_class = self.adim
assert A_num_class==2
A_label= self.A
A_0_mean_y = np.mean(self.Y[np.argwhere(A_label == 0).squeeze()])
A_1_mean_y = np.mean(self.Y[np.argwhere(A_label == 1).squeeze()])
return A_0_mean_y, A_1_mean_y
class InsuranceDataset(Dataset):
"""
The medical cost prediction dataset.
"""
def __init__(self, root_dir, phase):
self.npz_file = os.path.join(root_dir, 'insurance.npz')
self.data = np.load(self.npz_file)
if phase == "train":
self.X = self.data["x_train"]
self.Y = self.data["y_train"]
self.A = self.data["attr_train"]
elif phase == "test":
self.X = self.data["x_test"]
self.Y = self.data["y_test"]
self.A = self.data["attr_test"]
else:
raise NotImplementedError
self.Y = np.expand_dims(self.Y, axis=-1)
self.xdim = self.X.shape[1]
self.ydim = self.Y.shape[1]
self.adim = 2
def __len__(self):
return len(self.X)
def __getitem__(self, idx):
return torch.from_numpy(self.X[idx]).float(), \
torch.from_numpy(self.Y[idx]).float(), \
self.A[idx]
def get_YA_distribution(self):
'''get the the mean Y when in different sensitive groups
'''
A_num_class = self.adim
assert A_num_class==2
A_label= self.A
A_0_mean_y = np.mean(self.Y[np.argwhere(A_label == 0).squeeze()])
A_1_mean_y = np.mean(self.Y[np.argwhere(A_label == 1).squeeze()])
return A_0_mean_y, A_1_mean_y
if __name__ == '__main__':
logger = get_logger("dataset")
######## test pytorch adult dataset #########
root_dir = 'data'
tar_attr, priv_attr='income', 'sex' # income education-num
npz_file = os.path.join(root_dir, 'adult_%s_%s.npz' % (tar_attr, priv_attr))
data = np.load(npz_file)
logger.info("Adult dataset")
logger.info("tar_attr: %s, priv_att: %s"% (tar_attr, priv_attr))
X = data["x_train"]
Y = data["y_train"]
A = data["attr_train"]; A = np.argmax(A, axis=1)
logger.info('tar_attr, priv_attr=%s, %s'%(tar_attr, priv_attr))
logger.info("In training set:")
logger.info("max min for X are: %.6f, %.6f"%(np.amin(X), np.amax(X)))
logger.info("max min for Y are: %.6f, %.6f"%(np.amin(Y), np.amax(Y)))
logger.info("max min for A are: %.6f, %.6f"%(np.amin(A), np.amax(A)))
logger.info("0/1 for A are: %d, %d"%(len(A)-np.sum(A), np.sum(A)))
# from collections import Counter
# print(Counter(Y.squeeze().astype(str).tolist()))
trainset = AdultDataset(root_dir=root_dir, phase='train', tar_attr=tar_attr, priv_attr=priv_attr)
testset = AdultDataset(root_dir=root_dir, phase='test', tar_attr=tar_attr, priv_attr=priv_attr)
print(len(trainset), trainset[:100][0].shape, trainset[:100][1].shape, trainset[:100][2].shape)
print(len(testset), testset[:100][0].shape, testset[:100][1].shape, testset[:100][2].shape)
print(trainset[:100][0].dtype, trainset[:100][1].dtype, trainset[:100][2].dtype)
A_0_mean_y, A_1_mean_y = trainset.get_YA_distribution()
logger.info("In training set, the mean value of Y in different group:(%.6f,%.6f)"%(A_0_mean_y,A_1_mean_y))
A_0_mean_y, A_1_mean_y = testset.get_YA_distribution()
logger.info("In test set, the mean value of Y in different group:(%.6f,%.6f)"%(A_0_mean_y,A_1_mean_y))
#######################################################
################ test pytorch crime dataset #################
print('\n\n')
logger.info("Crime dataset")
root_dir = 'data'
trainset = CrimeDataset(root_dir=root_dir, phase='train')
testset = CrimeDataset(root_dir=root_dir, phase='test')
X = trainset.X
Y = trainset.Y
A = trainset.A
logger.info("In training set:")
logger.info("max min for X are: %.6f, %.6f"%(np.amin(X), np.amax(X)))
logger.info("max min for Y are: %.6f, %.6f"%(np.amin(Y), np.amax(Y)))
logger.info("max min for A are: %.6f, %.6f"%(np.amin(A), np.amax(A)))
print("len(trainset), len(testset): ",len(trainset), len(testset))
print(len(trainset), trainset[:100][0].shape, trainset[:100][1].shape, trainset[:100][2].shape)
print(len(testset), testset[:100][0].shape, testset[:100][1].shape, testset[:100][2].shape)
print(trainset[:100][0].dtype, trainset[:100][1].dtype, trainset[:100][2].dtype)
A_0_mean_y, A_1_mean_y = trainset.get_YA_distribution()
logger.info("In training set, the mean value of Y in different group:(%.6f,%.6f)"%(A_0_mean_y,A_1_mean_y))
A_0_mean_y, A_1_mean_y = testset.get_YA_distribution()
logger.info("In test set, the mean value of Y in different group:(%.6f,%.6f)"%(A_0_mean_y,A_1_mean_y))
#######################################################
################ test pytorch compas dataset #################
compas = pd.read_csv("data/propublica.csv").values
labels = compas[:, 0].astype(np.int64)
attrs = compas[:, 5].astype(np.int64)
print(labels.shape, attrs.shape)
print(labels[attrs==0].shape, np.sum(labels[attrs==0]))
print(labels[attrs==1].shape, np.sum(labels[attrs==1]))