-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbertweet_model.py
247 lines (208 loc) · 8.82 KB
/
bertweet_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
"""
Filtration Model
Given raw tweets (CSV in tweet_id,text,label format),
predict which tweets are related to events.
Authors: Justin Sech, Alexandra DeLucia
"""
# Standard
import os
import argparse
import logging
from types import SimpleNamespace
from typing import Dict, Any, Iterable
import pickle
# Third-party
import pandas as pd
import numpy as np
import torch
from sklearn.metrics import precision_score, accuracy_score, recall_score, f1_score
from sklearn.model_selection import StratifiedKFold
from transformers import RobertaConfig, RobertaModel
from transformers import PreTrainedTokenizer
from fairseq.data.encoders.fastbpe import fastBPE
from fairseq.data import Dictionary
# Custom packages
from littlebird import BERTweetTokenizer as TweetNormalizer
from littlebird import TweetReader
from BERTweet_utils import Batcher, BERTweetWrapper
# Set up logging
logging.basicConfig(level=logging.INFO)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--input-file", required=True, help="CSV with columns <tweet_id>,<tweet>,<label>")
parser.add_argument("--save-model-path",
help="Location to save model. should be torch file (.pt). "
"Only saves when cross-validation option is not used.")
parser.add_argument("--results-file", help="Location to results from cross-validation. Should be a pickle file (.pkl)")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--cpu", action="store_true", help="Use CPU instead of GPU")
parser.add_argument("--cross-validate", action="store_true",help="Indicates if you want to cross validate results or train on entire dataset")
parser.add_argument("--save-preds",action="store_true",help="Flag to save y_preds, must also indicate --cross-validate")
parser.add_argument("--BERTweet-model-path",
default="/home/aadelucia/files/minerva/src/feature_engineering/BERTweet_base_transformers",
help="Path to BERTweet_base_transformers folder")
parser.add_argument("--batch-size", default=20, type=int, help="Batch size")
parser.add_argument("--num-epochs", default=100, type=int)
parser.add_argument("--learning-rate", default=0.01, type=float)
parser.add_argument("--seed", default=42, type=int, help="Use this flag to specify a manual seed for train/test split")
return parser.parse_args()
class LogisticRegression(torch.nn.Module):
def __init__(self):
super(LogisticRegression, self).__init__()
self.linear = torch.nn.Linear(768, 1)
def forward(self, x):
y_pred = torch.sigmoid(self.linear(x))
return y_pred
def predict(self, x):
model_out = self.forward(x)
return (model_out > 0.5).int()
def predict_proba(self, x):
model_out = self.forward(x)
return model_out
if __name__ == "__main__":
args = parse_args()
# Set CPU/GPU device and claim it
if args.cpu:
device = "cpu"
torch.device("cpu")
else:
device = "cuda"
torch.device("cuda")
torch.ones(1).to("cuda")
# Initialize debugging if selected
if args.debug:
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
# Load model and configurations
try:
BERTweetWrapper = BERTweetWrapper(args.BERTweet_model_path, device)
except FileNotFoundError as err:
logging.error(f"Check path exists: {args.BERTweet_model_path}\n{err}")
sys.exit(1)
# Read in Tweets
tweets_df = pd.read_csv(args.input_file)
# Separate data and labels
data = tweets_df.text.values
labels = tweets_df.label.values
# Get BERTweet feature representations of each tweet prior to training
logging.info(f"Collecting BERTweet feature representations")
features = BERTweetWrapper.get_BERTweet_representation(data)
logging.info(f"Created {len(features)} tweet representations")
if args.cross_validate:
# Use cross-validation
# Store results for each fold
results = {}
skf = StratifiedKFold(n_splits=5, random_state=args.seed, shuffle=True)
loss_dict = {}
for fold, (train_index, test_index) in enumerate(skf.split(data, labels)):
# Initialize model, loss, and optimizer
model = LogisticRegression().to(device)
criterion = torch.nn.MSELoss().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=args.learning_rate)
# Initialize Batcher
batcher = Batcher(X=features[train_index], y=labels[train_index], batch_size=args.batch_size)
for epoch in range(args.num_epochs):
# Log progress
logging.info(f"On epoch {epoch}")
for batch_iter, (X, y) in enumerate(batcher.batchify()):
logging.debug(f"batch_iter: {batch_iter}\tX: {X}\ty: {y}")
# Batch descent
model.train()
optimizer.zero_grad()
# Slice all features for current indices
y_pred = model(X)
y = torch.reshape(torch.FloatTensor(y), y_pred.size()).to(device)
loss = criterion(y_pred, y)
loss.backward()
optimizer.step()
if args.debug:
# End program after first batch for debugging
break
# After final epoch, test the model
# Get BERTweet representation for test data
test_X = data[test_index]
test_y = labels[test_index]
test_features = BERTweetWrapper.get_BERTweet_representation(test_X)
y_pred = model.predict(test_features).cpu()
acc = accuracy_score(y_pred, test_y)
f1 = f1_score(y_pred, test_y)
prec = precision_score(y_pred, test_y)
rec = recall_score(y_pred, test_y)
if args.save_preds:
results_df = tweets_df['label'].iloc[test_index].to_frame().reset_index()
results_df['predicted'] = y_pred
results_df.to_csv("y_preds_bert.csv")
logging.info(f"""Results from fold {fold}
Accuracy: {acc}
Precision: {prec}
Recall: {rec}
F1: {f1}
""")
# Save model and results
results[fold] = {
"accuracy": acc,
"f1": f1,
"recall": rec,
"precision": prec
}
# Average the folds for the final score
final_acc, final_f1, final_rec, final_prec = [], [], [], []
for fold, res in results.items():
final_acc.append(res["accuracy"])
final_f1.append(res["f1"])
final_rec.append(res["recall"])
final_prec.append(res["precision"])
results["accuracy"] = {
"avg": np.average(final_acc),
"std": np.std(final_acc)
}
results["f1"] = {
"avg": np.average(final_f1),
"std": np.std(final_f1)
}
results["recall"] = {
"avg": np.average(final_rec),
"std": np.std(final_rec)
}
results["precision"] = {
"avg": np.average(final_prec),
"std": np.std(final_prec)
}
logging.info(f"""Final results
Accuracy: {results["accuracy"]}
Precision: {results["precision"]}
Recall: {results["recall"]}
F1: {results["f1"]}
""")
results['batch_size'] = args.batch_size
results['learning_rate'] = args.learning_rate
# Save models and results
with open(args.results_file, 'wb') as f:
pickle.dump(results, f)
logging.info(f"Results saved to {args.results_file}")
quit()
#####
# Train final model on entire dataset
#####
# Initialize model
model = LogisticRegression().to(device)
criterion = torch.nn.MSELoss().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=args.learning_rate)
batcher = Batcher(features, labels, batch_size=args.batch_size)
for epoch in range(args.num_epochs):
# Log progress
logging.info(f"On epoch {epoch}")
for batch_iter, (X, y) in enumerate(batcher.batchify()):
logging.debug(f"batch_iter: {batch_iter}\tX: {X}\ty: {y}")
# Get BERTweet representation of tweets
# Batch descent
model.train()
optimizer.zero_grad()
y_pred = model(X)
y = torch.reshape(torch.FloatTensor(y), y_pred.size()).to(device)
loss = criterion(y_pred, y)
loss.backward()
optimizer.step()
# Save model
torch.save(model, args.save_model_path)
logging.info(f"Model saved to {args.save_model_path}")