-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassifier.m
125 lines (114 loc) · 4.71 KB
/
classifier.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
function [stats, success_rate] = classifier(categoric_var, gaze_descriptors,classifier_type,cross_validation)
%Inputs:
%categoric_var= cell containing experimental condition names (strings)
%gaze_descriptors = cell containing gaze descriptors x experimental conditions.
%Gaze descriptors are computed with Compute_HMM_descriptors, normalized and regularized.
%They contain priors, transition matrix coefficients, state center coordinates, state covariance
%coefficients along the x and y axes).(observers x hmm parameters)
%classifier_type = name of the classifier used (string)
%Outputs:
%success_success_rate = number of correctly classified scanpaths / total number of scanpaths.
%stats = MANOVA stats structure
stats=NaN;
success_rate=NaN;
%Initialize variables
oksuccess_rate=0;
tested_obs=0;
all_cat=[];
all_obs=[];
for icat=1:length(categoric_var)%create categorical vector
one_obs_feat=gaze_descriptors{1,icat};
all_obs=[all_obs;one_obs_feat]; % Gaze descriptors sorted by classes
cat_cell=cell(size(one_obs_feat,1),1);
cat_cell(:)={char(categoric_var(icat))};
all_cat=[all_cat; cat_cell]; % Class labels
end
%MANOVA (equivalent to LDA but this function gives the Eigen vectors)
[~,~,stats] =manova1(all_obs,all_cat);
% k-fold cross-validation
if cross_validation==1
c = cvpartition(all_cat,'LeaveOut');%leave-one-out
else
c = cvpartition(all_cat,'k',cross_validation);
end
switch classifier_type
case 'LDA'
fun = @(xT,yT,xt,yt)(sum(strcmp(yt,classify(xt,xT,yT,'linear'))));
rate = crossval(fun,all_obs,all_cat,'partition',c);
success_rate=sum(rate)/sum(c.TestSize);
case 'diaglinear'
fun = @(xT,yT,xt,yt)(sum(strcmp(yt,classify(xt,xT,yT,'diaglinear'))));
rate = crossval(fun,all_obs,all_cat,'partition',c);
success_rate=sum(rate)/sum(c.TestSize);
case 'QDA'
fun = @(xT,yT,xt,yt)(sum(strcmp(yt,classify(xt,xT,yT,'quadratic'))));
rate = crossval(fun,all_obs,all_cat,'partition',c);
success_rate=sum(rate)/sum(c.TestSize);
case 'diagquadratic'
fun = @(xT,yT,xt,yt)(sum(strcmp(yt,classify(xt,xT,yT,'diagquadratic'))));
rate = crossval(fun,all_obs,all_cat,'partition',c);
success_rate=sum(rate)/sum(c.TestSize);
case 'mahalanobis'
fun = @(xT,yT,xt,yt)(sum(strcmp(yt,classify(xt,xT,yT,'mahalanobis'))));
rate = crossval(fun,all_obs,all_cat,'partition',c);
success_rate=sum(rate)/sum(c.TestSize);
case 'AdaBoostBinary'
adaStump = fitensemble(all_obs,all_cat,'AdaBoostM1',50,'Tree');
if cross_validation==1
cvada = crossval(adaStump,'LeaveOut','on');%leave-one-out
else
cvada = crossval(adaStump,'KFold',cross_validation);
end
success_rate = 1- kfoldLoss(cvada);
case 'AdaBoostMultiClass'
adaStump = fitensemble(all_obs,all_cat,'AdaBoostM2',50,'Tree');
if cross_validation==1
cvada = crossval(adaStump,'LeaveOut','on');%leave-one-out
else
cvada = crossval(adaStump,'KFold',cross_validation);
end
success_rate = 1- kfoldLoss(cvada);
case 'RandomForest'
Random_Forest_Stump = fitensemble(all_obs,all_cat,'Bag',50,'Tree','Type','classification');
if cross_validation==1
cvrf = crossval(Random_Forest_Stump,'LeaveOut','on');%leave-one-out
else
cvrf = crossval(Random_Forest_Stump,'KFold',cross_validation);
end
success_rate = 1- kfoldLoss(cvrf);
case 'SVMBinary'
SVMModel = fitcsvm(all_obs,all_cat,'Standardize',true,'ClassNames',categoric_var);
if cross_validation==1
cvsvm = crossval(SVMModel,'LeaveOut','on');%leave-one-out
else
cvsvm = crossval(SVMModel,'KFold',cross_validation);
end
success_rate = 1- kfoldLoss(cvsvm);
case 'SVMMultiClass'
Mdl = fitcecoc(all_obs,all_cat);
if cross_validation==1
cvsvm = crossval(Mdl,'LeaveOut','on');%leave-one-out
else
cvsvm = crossval(Mdl,'KFold',cross_validation);
end
success_rate = 1- kfoldLoss(cvsvm);
end
% case 'RVM'
% if length(categoric_var)>2
% error('Multiclass RVM not implemented yet. Please only use RVM for 2-class problems')
% end
% addpath './PRML_functions'
% pos=ones(size(gaze_descriptors{1,1},1),1);
% neg=zeros(size(gaze_descriptors{1,2},1),1);
% s_all_cat=[pos; neg];
% s_all_cat(isub)=[];
%
% [model, ~] = rvmBinEm(s_all_obs',s_all_cat');
% [classestimate, ~] = rvmBinPred(model,observation');
%
% if classestimate==1
% class=categoric_var(1);
% elseif classestimate==0
% class=categoric_var(2);
% end
end