-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathconvnet_utils.py
99 lines (89 loc) · 3.46 KB
/
convnet_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import torch.nn as nn
from basic import ConvBN
from blocks import DBB, OREPA_1x1, OREPA, OREPA_LargeConvBase, OREPA_LargeConv
from blocks_repvgg import RepVGGBlock, RepVGGBlock_OREPA
CONV_BN_IMPL = 'base'
DEPLOY_FLAG = False
def choose_blk(kernel_size):
if CONV_BN_IMPL == 'OREPA':
if kernel_size == 1:
blk_type = OREPA_1x1
elif kernel_size >= 7:
blk_type = OREPA_LargeConv
else:
blk_type = OREPA
elif CONV_BN_IMPL == 'base' or kernel_size == 1 or kernel_size >= 7:
blk_type = ConvBN
elif CONV_BN_IMPL == 'DBB':
blk_type = DBB
elif CONV_BN_IMPL == 'RepVGG':
blk_type = RepVGGBlock
elif CONV_BN_IMPL == 'OREPA_VGG':
blk_type = RepVGGBlock_OREPA
else:
raise NotImplementedError
return blk_type
def conv_bn(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, assign_type=None):
if assign_type is not None:
blk_type = assign_type
else:
blk_type = choose_blk(kernel_size)
return blk_type(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation, groups=groups, deploy=DEPLOY_FLAG)
def conv_bn_relu(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, assign_type=None):
if assign_type is not None:
blk_type = assign_type
else:
blk_type = choose_blk(kernel_size)
return blk_type(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation, groups=groups, deploy=DEPLOY_FLAG, nonlinear=nn.ReLU())
def switch_conv_bn_impl(block_type):
global CONV_BN_IMPL
CONV_BN_IMPL = block_type
def switch_deploy_flag(deploy):
global DEPLOY_FLAG
DEPLOY_FLAG = deploy
print('deploy flag: ', DEPLOY_FLAG)
def build_model(arch):
if arch == 'ResNet-18':
from models.resnet import create_Res18
model = create_Res18()
elif arch == 'ResNet-34':
from models.resnet import create_Res34
model = create_Res34()
elif arch == 'ResNet-50':
from models.resnet import create_Res50
model = create_Res50()
elif arch == 'ResNet-101':
from models.resnet import create_Res101
model = create_Res101()
elif arch == 'RepVGG-A0':
from models.repvgg import create_RepVGG_A0
model = create_RepVGG_A0()
elif arch == 'RepVGG-A1':
from models.repvgg import create_RepVGG_A1
model = create_RepVGG_A1()
elif arch == 'RepVGG-A2':
from models.repvgg import create_RepVGG_A2
model = create_RepVGG_A2()
elif arch == 'RepVGG-B1':
from models.repvgg import create_RepVGG_B1
model = create_RepVGG_B1()
elif arch == 'ResNet-18-1.5x':
from models.resnet import create_Res18_1d5x
model = create_Res18_1d5x()
elif arch == 'ResNet-18-2x':
from models.resnet import create_Res18_2x
model = create_Res18_2x()
elif arch == 'ResNeXt-50':
from models.resnext import create_Res50_32x4d
model = create_Res50_32x4d()
#elif arch == 'RegNet-800MF':
#from models.regnet import create_Reg800MF
#model = create_Reg800MF()
#elif arch == 'ConvNext-T-0.5x':
#from models.convnext import convnext_tiny_0d5x
#model = convnext_tiny_0d5x()
else:
raise ValueError('TODO')
return model