-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrobertson_optimization_example.py
200 lines (138 loc) · 5.01 KB
/
robertson_optimization_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# -*- coding: utf-8 -*-
# <nbformat>3.0</nbformat>
# <markdowncell>
# We start by importing the calls for basic functions we use with the modeling. Numpy is for controlling data and matplotlib is for graphics
# <codecell>
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
# <markdowncell>
# Next we will import the model and the odesolver from pysb
# <codecell>
from pysb.examples.robertson import model
from pysb.integrate import odesolve
import pysb
# <markdowncell>
# H. H. Robertson, The solution of a set of reaction rate equations, in Numerical
# Analysis: An Introduction, J. Walsh, ed., Academic Press, 1966, pp. 178-182.
# <markdowncell>
# $
# A \rightarrow B \\
# 2B \rightarrow B + C \\
# B + C \rightarrow A + C \\$
# <markdowncell>
# We will integrate the model for 40 seconds.
# <codecell>
t = np.linspace(0, 40,100)
obs_names = ['A_total', 'C_total']
# <markdowncell>
# Here we run solve the ode. We pass it the model, time, and any extra arguments ( here we provide r tolerace nad a tolerance)
# <codecell>
solver = pysb.integrate.Solver(model, t, integrator='lsoda',rtol=1e-8, atol=1e-8)
# <codecell>
solver.run()
# <codecell>
def normalize(trajectories):
"""Rescale a matrix of model trajectories to 0-1"""
ymin = trajectories.min(0)
ymax = trajectories.max(0)
return (trajectories - ymin) / (ymax - ymin)
def extract_records(recarray, names):
"""Convert a record-type array and list of names into a float array"""
return np.vstack([recarray[name] for name in names]).T
# <codecell>
yobs= extract_records(solver.yobs, obs_names)
norm_data = normalize(yobs)
# <codecell>
plt.plot(t,norm_data)
plt.legend(['A_Total','C_Total'], loc = 0)
# <markdowncell>
# We are going to make some noisy data for optimization.
# <codecell>
noisy_data_A = yobs[:,0] + np.random.uniform(-0.02,0.02,np.shape(yobs[:,0]))
norm_noisy_data_A = normalize(noisy_data_A)
noisy_data_C = yobs[:,1] + np.random.uniform(-.01,.01,np.shape(yobs[:,1]))
norm_noisy_data_C = normalize(noisy_data_C)
ydata_norm = np.column_stack((norm_noisy_data_A,norm_noisy_data_C))
# <codecell>
plt.plot(t,norm_noisy_data_A)
plt.plot(t,norm_noisy_data_C)
plt.plot(t,norm_data)
plt.legend(['A_total_noisy','C_total_noisy','A_total', 'B_total', 'C_total'], loc=0)
# <codecell>
param_values = np.array([p.value for p in model.parameters])
rate_mask = np.array([p in rate_params for p in model.parameters])
nominal_values = np.array([p.value for p in model.parameters])
xnomial = np.log10(nominal_values[rate_mask])
def display(x=None):
if x == None:
solver.run(param_values)
else:
Y=np.copy(x)
param_values[rate_mask] = 10 ** Y
solver.run(param_values)
ysim_array = extract_records(solver.yobs, obs_names)
ysim_norm = normalize(ysim_array)
plt.figure(figsize=(8,6),dpi=200)
plt.plot(t,ysim_norm[:,0],label='A')
plt.plot(t,ysim_norm[:,1],label='C')
plt.plot(t,norm_noisy_data_A,label='Noisy A')
plt.plot(t,norm_noisy_data_C,label='Noisy C')
if x ==None:
print ''
else:
plt.plot(t,norm_data,label=['Ideal'])
plt.legend(loc=0)
plt.ylabel('concentration')
plt.xlabel('time (s)')
plt.show()
# <codecell>
display()
# <codecell>
from scipy.optimize import minimize
# <codecell>
rate_params = model.parameters_rules()
param_values = np.array([p.value for p in model.parameters])
rate_mask = np.array([p in rate_params for p in model.parameters])
# Build a boolean mask for those params against the entire param list
k_ids = [p.value for p in model.parameters_rules()]
# <codecell>
nominal_values = np.array([p.value for p in model.parameters])
xnominal = np.log10(nominal_values[rate_mask])
bounds_radius = 1
lb = xnominal - bounds_radius
ub = xnominal + bounds_radius
# <codecell>
print xnominal
start_position = xnominal +2*np.random.uniform(-1,1,size = np.shape(xnominal))
print start_position
display(start_position)
# <codecell>
def obj_function(params):
# Apply hard bounds
if np.any((params < lb) | (params> ub)):
#print "bounds-check failed"
return 1000
params_tmp = np.copy(params)
param_values[rate_mask] = 10 ** params_tmp
solver.run(param_values)
ysim_array = extract_records(solver.yobs, obs_names)
ysim_norm = normalize(ysim_array)
err = np.sum((ydata_norm - ysim_norm) ** 2 )
if np.isnan(err):
return 1000
#print err
return err
# <markdowncell>
# There are many existing optimization algorithms written in Python (remember, we don't want to reinvent the wheel). Scipy is a general package that includes many methods. We will demonstrate the basic minimization with the Nelder-mead algorithm.
# http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize
#
# <codecell>
results = minimize(obj_function,start_position,method='Nelder-mead',options={'xtol': 1e-8, 'disp': True})
# <codecell>
print results
best = np.reshape(results['x'],np.shape(xnominal))
# <codecell>
display(start_position)
display(best)
# <codecell>