-
Notifications
You must be signed in to change notification settings - Fork 292
/
Copy pathdemo_nmf_topic_model.py
49 lines (41 loc) · 1.65 KB
/
demo_nmf_topic_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from sklearn.decomposition import NMF
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.pipeline import Pipeline
import scattertext as st
convention_df = st.SampleCorpora.ConventionData2012.get_data()
convention_df['parse'] = convention_df['text'].apply(st.whitespace_nlp_with_sentences)
unigram_corpus = (st.CorpusFromParsedDocuments(convention_df,
category_col='party',
parsed_col='parse')
.build().get_stoplisted_unigram_corpus())
sentences_for_topic_modeling = st.SentencesForTopicModeling(unigram_corpus)
pipeline = Pipeline([
('tfidf', TfidfTransformer(sublinear_tf=True)),
('nmf', (NMF(n_components=100, l1_ratio=.5, random_state=0)))
])
topic_model = sentences_for_topic_modeling.get_topics_from_model(
pipe=pipeline,
num_terms_per_topic=20
)
topic_feature_builder = st.FeatsFromTopicModel(topic_model)
topic_corpus = st.CorpusFromParsedDocuments(
convention_df,
category_col='party',
parsed_col='parse',
feats_from_spacy_doc=topic_feature_builder
).build()
html = st.produce_scattertext_explorer(
topic_corpus,
category='democrat',
category_name='Democratic',
not_category_name='Republican',
width_in_pixels=1000,
metadata=convention_df['speaker'],
use_non_text_features=True,
use_full_doc=True,
pmi_threshold_coefficient=0,
topic_model_term_lists=topic_feature_builder.get_top_model_term_lists(),
topic_model_preview_size=20
)
open('./demo_nmf_topic_model.html', 'wb').write(html.encode('utf-8'))
print('Open ./demo_nmf_topic_model.html in Chrome or Firefox.')