-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_oil_examples_kitchen.py
212 lines (178 loc) · 10.3 KB
/
run_oil_examples_kitchen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import os
import time
import d4rl
import gym
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import torch
from tqdm import tqdm
import wandb
import envs
import utils
from smodice_pytorch import SMODICE
from rce_pytorch import RCE_TD3_BC
from oril_pytorch import ORIL
from discriminator_pytorch import Discriminator_SA
np.set_printoptions(precision=3, suppress=True)
def run(config):
# load offline dataset
env = gym.make(f"{config['env_name']}-mixed-v0")
dataset = env.get_dataset()
# Load the custom kitchen environment that gets the success examples
evaluation_env = gym.make(f"{config['env_name']}-{config['dataset']}-v0")
expert_obs = evaluation_env.get_example(dataset, num_expert_obs=500)
expert_traj = {'observations': expert_obs}
np.random.seed(config['seed'])
torch.manual_seed(config['seed'])
env.seed(config['seed'])
evaluation_env.seed(config['seed'])
initial_obs_dataset, dataset, dataset_statistics = utils.dice_dataset(env, standardize_observation=config['standardize_obs'], absorbing_state=config['absorbing_state'], standardize_reward=config['standardize_reward'])
# Normalize expert observations and potentially add absorbing state
if config['standardize_obs']:
expert_obs_dim = expert_traj['observations'].shape[1]
expert_traj['observations'] = (expert_traj['observations'] - dataset_statistics['observation_mean'][:expert_obs_dim]) / (dataset_statistics['observation_std'][:expert_obs_dim] + 1e-10)
if 'next_observations' in expert_traj:
expert_traj['next_observations'] = (expert_traj['next_observations'] - dataset_statistics['observation_mean']) / (dataset_statistics['observation_std'] + 1e-10)
if config['absorbing_state'] and 'terminal' in expert_traj:
expert_traj = utils.add_absorbing_state(expert_traj)
if config['use_policy_entropy_constraint'] or config['use_data_policy_entropy_constraint']:
if config['target_entropy'] is None:
config['target_entropy'] = -np.prod(env.action_space.shape)
# Create inputs for the discriminator
state_dim = dataset_statistics['observation_dim'] + 1 if config['absorbing_state'] else dataset_statistics['observation_dim']
action_dim = 0 if config['state'] else dataset_statistics['action_dim']
disc_cutoff = state_dim
expert_input = expert_traj['observations'][:, :disc_cutoff]
offline_input = dataset['observations'][:, :disc_cutoff]
discriminator = Discriminator_SA(disc_cutoff, action_dim, hidden_dim=config['hidden_sizes'][0], device=config['device'])
# Train discriminator
if config['disc_type'] == 'learned':
dataset_expert = torch.utils.data.TensorDataset(torch.FloatTensor(expert_input))
expert_loader = torch.utils.data.DataLoader(dataset_expert, batch_size=256, shuffle=True, pin_memory=True)
dataset_offline = torch.utils.data.TensorDataset(torch.FloatTensor(offline_input))
offline_loader = torch.utils.data.DataLoader(dataset_offline, batch_size=256, shuffle=True, pin_memory=True)
# Train discriminator
print("Train Discriminator")
for i in tqdm(range(config['disc_iterations'])):
loss = discriminator.update(expert_loader, offline_loader)
def _sample_minibatch(batch_size, reward_scale):
initial_indices = np.random.randint(0, dataset_statistics['N_initial_observations'], batch_size)
indices = np.random.randint(0, dataset_statistics['N'], batch_size)
sampled_dataset = (
initial_obs_dataset['initial_observations'][initial_indices],
dataset['observations'][indices],
dataset['actions'][indices],
dataset['rewards'][indices] * reward_scale,
dataset['next_observations'][indices],
dataset['terminals'][indices]
)
return tuple(map(torch.from_numpy, sampled_dataset))
def _evaluate(env, agent, dataset_statistics, absorbing_state=True, num_evaluation=10, normalize=False, make_gif=False, iteration=0, max_steps=None, run_name=''):
normalized_scores = []
if max_steps is None:
max_steps = env._max_episode_steps
imgs = []
for eval_iter in range(num_evaluation):
start_time = time.time()
obs = env.reset()
episode_reward = 0
for t in tqdm(range(max_steps), ncols=70, desc='evaluate', ascii=True, disable=os.environ.get("DISABLE_TQDM", False)):
if absorbing_state:
obs_standardized = np.append((obs - dataset_statistics['observation_mean']) / (dataset_statistics['observation_std'] + 1e-10), 0)
else:
obs_standardized = (obs - dataset_statistics['observation_mean']) / (dataset_statistics['observation_std'] + 1e-10)
actions = agent.step((np.array([obs_standardized])).astype(np.float32))
action = actions[0][0].numpy()
# prevent NAN
action = np.clip(action, env.action_space.low, env.action_space.high)
next_obs, reward, done, info = env.step(action)
# only care about the specified task
if config['dataset'] in info['rewards']['removed']:
reward = 1.0
done = True
else:
reward = 0.0
done = False
if make_gif and eval_iter == 0:
img = env.render(mode="rgb_array")
imgs.append(Image.fromarray(img))
episode_reward += reward
if done:
break
obs = next_obs
if normalize:
normalized_score = 100 * (episode_reward - d4rl.infos.REF_MIN_SCORE[env.spec.id]) / (d4rl.infos.REF_MAX_SCORE[env.spec.id] - d4rl.infos.REF_MIN_SCORE[env.spec.id])
else:
normalized_score = episode_reward
print(f'normalized_score: {normalized_score} (elapsed_time={time.time() - start_time:.3f}) ')
normalized_scores.append(normalized_score)
if make_gif:
imgs = np.array(imgs)
imgs[0].save(f"policy_gifs/{run_name}-iter{iteration}.gif", save_all=True,
append_images=imgs[1:], duration=60, loop=0)
return np.mean(normalized_scores)
if 'dice' in config['algo_type']:
agent = SMODICE(dataset_statistics['observation_dim'] + 1 if config['absorbing_state'] else dataset_statistics['observation_dim'],
dataset_statistics['action_dim'], config=config
)
elif 'rce' in config['algo_type']:
state_dim = dataset_statistics['observation_dim'] + 1 if config['absorbing_state'] else dataset_statistics['observation_dim']
action_dim = dataset_statistics['action_dim']
max_action = env.action_space.high[0]
agent = RCE_TD3_BC(state_dim, action_dim, max_action)
elif 'oril' in config['algo_type']:
state_dim = dataset_statistics['observation_dim'] + 1 if config['absorbing_state'] else dataset_statistics['observation_dim']
action_dim = dataset_statistics['action_dim']
max_action = env.action_space.high[0]
agent = ORIL(state_dim, action_dim, max_action)
else:
raise NotImplementedError
result_logs = []
start_iteration = 0
# Start training
start_time = time.time()
last_start_time = time.time()
for iteration in tqdm(range(start_iteration, config['total_iterations'] + 1), ncols=70, desc='DICE', initial=start_iteration, total=config['total_iterations'] + 1, ascii=True, disable=os.environ.get("DISABLE_TQDM", False)):
# Sample mini-batch data from dataset
initial_observation, observation, action, reward, next_observation, terminal = _sample_minibatch(config['batch_size'], config['reward_scale'])
# Sample success states for RCE
if config['algo_type'] == 'rce':
success_indices = np.random.randint(0, expert_traj['observations'].shape[0], config['batch_size'])
success_state = torch.from_numpy(expert_traj['observations'][success_indices])
initial_observation = success_state
# Compute discriminator based reward (SMODICE, ORIL)
with torch.no_grad():
obs_for_disc = torch.from_numpy(np.array(observation)).to(discriminator.device)
if config['state']:
disc_input = obs_for_disc
else:
act_for_disc = torch.from_numpy(np.array(action)).to(discriminator.device)
disc_input = torch.cat([obs_for_disc, act_for_disc], axis=1)
reward = discriminator.predict_reward(disc_input)
# Perform gradient descent
train_result = agent.train_step(initial_observation, observation, action, reward, next_observation, terminal)
# Evaluation
if iteration % config['log_iterations'] == 0:
train_result = {k: v.detach().cpu().numpy() for k, v in train_result.items()}
# evaluation via real-env rollout
eval = _evaluate(env, agent, dataset_statistics, absorbing_state=config['absorbing_state'],
normalize=False, num_evaluation=10, max_steps=280)
train_result.update({'iteration': iteration, 'eval': eval})
train_result.update({'iter_per_sec': config['log_iterations'] / (time.time() - last_start_time)})
if 'w_e' in train_result:
train_result.update({'w_e': train_result['w_e'].mean()})
result_logs.append({'log': train_result, 'step': iteration})
if not int(os.environ.get('DISABLE_STDOUT', 0)):
print(f'=======================================================')
# for k, v in sorted(train_result.items()):
# print(f'- {k:23s}:{v:15.10f}')
if train_result.get('eval'):
print(f'- {"eval":23s}:{train_result["eval"]:15.10f}')
print(f'iteration={iteration} (elapsed_time={time.time() - start_time:.2f}s, {train_result["iter_per_sec"]:.2f}it/s)')
print(f'=======================================================', flush=True)
last_start_time = time.time()
if __name__ == "__main__":
from configs.oil_examples_kitchen_default import get_parser
args = get_parser().parse_args()
run(vars(args))