forked from wzmsltw/BSN-boundary-sensitive-network
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPGM_proposal_generation.py
executable file
·132 lines (111 loc) · 4.68 KB
/
PGM_proposal_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# -*- coding: utf-8 -*-
import json
import numpy
import pandas
import argparse
def load_json(file):
with open(file) as json_file:
data = json.load(json_file)
return data
def iou_with_anchors(anchors_min,anchors_max,box_min,box_max):
"""Compute jaccard score between a box and the anchors.
"""
len_anchors=anchors_max-anchors_min
int_xmin = numpy.maximum(anchors_min, box_min)
int_xmax = numpy.minimum(anchors_max, box_max)
inter_len = numpy.maximum(int_xmax - int_xmin, 0.)
union_len = len_anchors - inter_len +box_max-box_min
#print inter_len,union_len
jaccard = numpy.divide(inter_len, union_len)
return jaccard
def ioa_with_anchors(anchors_min,anchors_max,box_min,box_max):
"""Compute intersection between score a box and the anchors.
"""
len_anchors=anchors_max-anchors_min
int_xmin = numpy.maximum(anchors_min, box_min)
int_xmax = numpy.minimum(anchors_max, box_max)
inter_len = numpy.maximum(int_xmax - int_xmin, 0.)
scores = numpy.divide(inter_len, len_anchors)
return scores
def generateProposals(video_name,video_dict):
tscale = 100
tgap = 1./tscale
peak_thres=0.5
tdf=pandas.read_csv("./output/TEM_results/"+video_name+".csv")
start_scores=tdf.start.values[:]
end_scores=tdf.end.values[:]
max_start = max(start_scores)
max_end = max(end_scores)
start_bins=numpy.zeros(len(start_scores))
start_bins[[0,-1]]=1
for idx in range(1,tscale-1):
if start_scores[idx]>start_scores[idx+1] and start_scores[idx]>start_scores[idx-1]:
start_bins[idx]=1
elif start_scores[idx]>(peak_thres*max_start):
start_bins[idx]=1
end_bins=numpy.zeros(len(end_scores))
end_bins[[0,-1]]=1
for idx in range(1,tscale-1):
if end_scores[idx]>end_scores[idx+1] and end_scores[idx]>end_scores[idx-1]:
end_bins[idx]=1
elif end_scores[idx]>(peak_thres*max_end):
end_bins[idx]=1
xmin_list=[]
xmin_score_list=[]
xmax_list=[]
xmax_score_list=[]
for j in range(tscale):
if start_bins[j]==1:
xmin_list.append(tgap/2+tgap*j)
xmin_score_list.append(start_scores[j])
if end_bins[j]==1:
xmax_list.append(tgap/2+tgap*j)
xmax_score_list.append(end_scores[j])
new_props=[]
for ii in range(len(xmax_list)):
tmp_xmax=xmax_list[ii]
tmp_xmax_score=xmax_score_list[ii]
for ij in range(len(xmin_list)):
tmp_xmin=xmin_list[ij]
tmp_xmin_score=xmin_score_list[ij]
if tmp_xmin>=tmp_xmax:
break
new_props.append([tmp_xmin,tmp_xmax,tmp_xmin_score,tmp_xmax_score])
new_props=numpy.stack(new_props)
col_name=["xmin","xmax","xmin_score","xmax_score"]
new_df=pandas.DataFrame(new_props,columns=col_name)
new_df["score"]=new_df.xmin_score*new_df.xmax_score
new_df=new_df.sort_values(by="score",ascending=False)
video_info=video_dict[video_name]
video_frame=video_info['duration_frame']
video_second=video_info['duration_second']
feature_frame=video_info['feature_frame']
corrected_second=float(feature_frame)/video_frame*video_second
try:
gt_xmins=[]
gt_xmaxs=[]
for idx in range(len(video_info["annotations"])):
gt_xmins.append(video_info["annotations"][idx]["segment"][0]/corrected_second)
gt_xmaxs.append(video_info["annotations"][idx]["segment"][1]/corrected_second)
new_iou_list=[]
for j in range(len(new_df)):
tmp_new_iou=max(iou_with_anchors(new_df.xmin.values[j],new_df.xmax.values[j],gt_xmins,gt_xmaxs))
new_iou_list.append(tmp_new_iou)
new_ioa_list=[]
for j in range(len(new_df)):
tmp_new_ioa=max(ioa_with_anchors(new_df.xmin.values[j],new_df.xmax.values[j],gt_xmins,gt_xmaxs))
new_ioa_list.append(tmp_new_ioa)
new_df["match_iou"]=new_iou_list
new_df["match_ioa"]=new_ioa_list
except:
pass
new_df.to_csv("./output/PGM_proposals/"+video_name+".csv",index=False)
parser = argparse.ArgumentParser(description="Boundary Sensitive Network")
parser.add_argument('start_idx', type=int)
parser.add_argument('end_idx', type=int)
args = parser.parse_args()
video_dict= load_json("./data/activitynet_annotations/anet_anno_action.json")
result_dict={}
video_list=video_dict.keys()[args.start_idx:args.end_idx]
for video_name in video_list:
generateProposals(video_name,video_dict)