-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutil.py
269 lines (209 loc) · 9.29 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# -*- coding: utf-8 -*-
import os
import json
import numpy as np
import itertools
def get_intersection(region1, region2):
""" Get intersection of two segments
"""
start1, end1 = region1
start2, end2 = region2
start = max(start1, start2)
end = min(end1, end2)
return start, end
def get_iou(pred, gt):
""" Get tIoU of two segments
"""
start_pred, end_pred = pred
start, end = gt
intersection = max(0, min(end, end_pred) - max(start, start_pred))
union = min(max(end, end_pred) - min(start, start_pred), end - start + end_pred - start_pred)
iou = float(intersection) / (union + 1e-8)
return iou
def get_miou(predictions, groundtruths):
""" Get mean IoU
"""
ious = []
for idx in groundtruths.keys():
if idx not in predictions.keys():
ious.append(0.)
continue
pred = predictions[idx][0]
ious.append(get_iou(pred['timestamp'], groundtruths[idx]['timestamp']))
miou = sum(ious) / len(ious)
return miou
def nms_detections(proposals, overlap=0.7):
"""Non-maximum suppression: Greedily select high-scoring detections and
skip detections that are significantly covered by a previously selected
detection. This version is translated from Matlab code by Tomasz
Malisiewicz, who sped up Pedro Felzenszwalb's code.
Parameters
----------
proposals: list of item, each item is a dict containing 'timestamp' and 'score' field
overlap: iou threshold
Returns
-------
new proposals with only the proposals selected after non-maximum suppression.
"""
if len(proposals) == 0:
return proposals
props = np.array([item['timestamp'] for item in proposals])
scores = np.array([item['score'] for item in proposals])
t1 = props[:, 0]
t2 = props[:, 1]
ind = np.argsort(scores)
area = (t2 - t1).astype(float)
pick = []
while len(ind) > 0:
i = ind[-1]
pick.append(i)
ind = ind[:-1]
tt1 = np.maximum(t1[i], t1[ind])
tt2 = np.minimum(t2[i], t2[ind])
wh = np.maximum(0., tt2 - tt1)
o = wh / (area[i] + area[ind] - wh)
ind = ind[np.nonzero(o <= overlap)[0]]
nms_props, nms_scores = props[pick, :], scores[pick]
out_proposals = []
for idx in range(nms_props.shape[0]):
prop = nms_props[idx].tolist()
score = float(nms_scores[idx])
out_proposals.append({'timestamp': prop, 'score': score})
return out_proposals
def get_recall_at_k(predictions, groundtruths, iou_threshold=0.5, max_proposal_num=5):
""" Get R@k for all predictions
R@k: Given k proposals, if there is at least one proposal has higher tIoU than iou_threshold, R@k=1; otherwise R@k=0
The predictions should have been sorted by confidence
"""
hit = np.zeros(shape=(len(groundtruths.keys()),), dtype=np.float32)
for idd, idx in enumerate(groundtruths.keys()):
if idx in predictions.keys():
preds = predictions[idx][:max_proposal_num]
for pred in preds:
if get_iou(pred['timestamp'], groundtruths[idx]['timestamp']) >= iou_threshold:
hit[idd] = 1.
avg_recall = np.sum(hit) / len(hit)
return avg_recall
def evaluation_metric_util(options, data_provision, sess, inputs, outputs, split='val'):
"""
Metric evaluation (recall at k proposals)
:param options: hyper parameters
:param data_provision: data interface
:param sess: tensorflow session
:param inputs: input placeholders
:param outputs: output placeholders
:param split: data split for evaluation
:return: evaluated metrics
"""
eval_batch_size = options['eval_batch_size']
unique_anno_ids = data_provision.get_ids(split)
anchors = data_provision.get_anchors()
grounding = data_provision.get_grounding(split)
print('Predicting proposal scores ...')
count = 0
# output data, for evaluation
out_data = {'results': {}}
results = {}
for batch_data in data_provision.iterate_batch(split, eval_batch_size):
video_feats = batch_data['video_feat']
video_feat_mask = batch_data['video_feat_mask']
max_feat_len = video_feat_mask.shape[-1]
this_batch_size = video_feat_mask.shape[0]
zero_state = np.zeros(shape=(this_batch_size, options['rnn_size']))
video_c_state = video_h_state = zero_state
interactor_c_state = interactor_h_state = zero_state
proposal_scores = np.zeros(shape=(this_batch_size, 0, options['num_anchors']))
print('max_feat_len: {}'.format(max_feat_len))
for video_feat_id in range(max_feat_len):
print('Loop: {}'.format(video_feat_id))
video_feat = video_feats[:, video_feat_id]
batch_data['video_feat'] = video_feat
batch_data['video_c_state'] = video_c_state
batch_data['video_h_state'] = video_h_state
batch_data['interactor_c_state'] = interactor_c_state
batch_data['interactor_h_state'] = interactor_h_state
feed_dict = {}
for key, value in batch_data.items():
if key not in inputs:
continue
feed_dict[inputs[key]] = value
proposal_score, video_c_state, video_h_state, interactor_c_state, interactor_h_state = \
sess.run([outputs['proposal_score'], outputs['video_c_state'], outputs['video_h_state'],
outputs['interactor_c_state'], outputs['interactor_h_state']], feed_dict=feed_dict)
proposal_score = np.expand_dims(proposal_score, axis=1)
proposal_scores = np.concatenate((proposal_scores, proposal_score), axis=1)
feat_lens = np.sum(video_feat_mask, axis=-1)
for sample_id in range(this_batch_size):
unique_anno_id = unique_anno_ids[count]
feat_len = feat_lens[sample_id]
# small gap (in seconds) due to feature resolution
gap = 0.5
result = []
for i in range(feat_len):
for j in range(len(anchors)):
# calculate time stamp from feature id
end_feat = i + 0.5
start_feat = end_feat - anchors[j]
end_time = options['feature_to_second'] * end_feat
start_time = options['feature_to_second'] * start_feat
if start_time < 0. - options['feature_to_second']*gap:
continue
start_time = max(0., start_time)
score = float(proposal_scores[sample_id, i, j])
result.append({'timestamp': [start_time, end_time],
'score': score})
print('Number of proposals (before post-processing): %d' % len(result))
result = sorted(result, key=lambda x: x['score'], reverse=True)
# non-maximum suppresion
result = nms_detections(result, overlap=options['nms_threshold'])
print('Number of proposals (after nms): %d' % len(result))
result = sorted(result, key=lambda x: x['score'], reverse=True)
result = result[:10]
print('#{}, {}'.format(count, unique_anno_id))
print('sentence query:')
sentence_query = grounding[unique_anno_id]['raw_sentence']
print(sentence_query)
print('result (top 10):')
print(result[:10])
print('ground-truth:')
print(grounding[unique_anno_id]['timestamp'])
results[unique_anno_id] = result
if (count + 1) % 10 == 0:
print('Processed %d items' % (count + 1))
count = count + 1
out_data['results'] = results
print('Evaluating ...')
recall_at_k = get_recall_at_k(results, grounding, options['tiou_measure'], options['max_proposal_num'])
print('R@{}, tIoU={}: {}'.format(options['max_proposal_num'], options['tiou_measure'], recall_at_k))
return out_data, recall_at_k
def eval_result(result_file, gt_file):
"""
Calculate mIoU, recalls for a given result file
:param result_file: input .json result file
:param gt_file: ground-truth file
:return: None
"""
results = json.load(open(result_file, 'r'))['results']
groundtruth_data = json.load(open(gt_file, 'r'))
video_ids = list(groundtruth_data.keys())
out_grounding_data = {}
for video_id in video_ids:
gd = groundtruth_data[video_id]
for anno_id in range(len(gd['timestamps'])):
unique_anno_id = video_id + '-' + str(anno_id)
out_grounding_data[unique_anno_id] = {
'video_id': video_id,
'anno_id': anno_id,
'timestamp': gd['timestamps'][anno_id],
'sentence': gd['encoded_sentences'][anno_id],
'raw_sentence': gd['sentences'][anno_id]}
groundtruth_data = out_grounding_data
miou = get_miou(results, groundtruth_data)
print('mIoU: {}'.format(miou))
for iou, max_proposal_num in list(itertools.product([0.7, 0.5, 0.3], [1, 5])):
recall = get_recall_at_k(results, groundtruth_data, iou_threshold=iou, max_proposal_num=max_proposal_num)
print('R@{}, IoU={}: {}'.format(max_proposal_num, iou, recall))
return
def mkdirs(folder_path):
if not os.path.exists(folder_path):
os.makedirs(folder_path)