diff --git a/articles/cocoon.html b/articles/cocoon.html index c00f2b3..250c95a 100644 --- a/articles/cocoon.html +++ b/articles/cocoon.html @@ -379,6 +379,158 @@
The format_stats()
function can also input objects
+returned by the lm()
and glm()
functions. It
+can report overall model statistics (e.g., R-squared, AIC) and
+term-specific statistics (e.g., coefficients, p-values).
Let’s start by creating a linear model and generalized linear +model:
+
+lm_mpg_cyl_hp <- lm(mpg ~ cyl * hp, data = mtcars)
+summary(lm_mpg_cyl_hp)
+#>
+#> Call:
+#> lm(formula = mpg ~ cyl * hp, data = mtcars)
+#>
+#> Residuals:
+#> Min 1Q Median 3Q Max
+#> -4.778 -1.969 -0.228 1.403 6.491
+#>
+#> Coefficients:
+#> Estimate Std. Error t value Pr(>|t|)
+#> (Intercept) 50.751207 6.511686 7.794 1.72e-08 ***
+#> cyl -4.119140 0.988229 -4.168 0.000267 ***
+#> hp -0.170680 0.069102 -2.470 0.019870 *
+#> cyl:hp 0.019737 0.008811 2.240 0.033202 *
+#> ---
+#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+#>
+#> Residual standard error: 2.974 on 28 degrees of freedom
+#> Multiple R-squared: 0.7801, Adjusted R-squared: 0.7566
+#> F-statistic: 33.11 on 3 and 28 DF, p-value: 2.386e-09
+glm_am_cyl_hp <- glm(am ~ cyl * hp, data = mtcars, family = binomial)
+summary(glm_am_cyl_hp)
+#>
+#> Call:
+#> glm(formula = am ~ cyl * hp, family = binomial, data = mtcars)
+#>
+#> Coefficients:
+#> Estimate Std. Error z value Pr(>|z|)
+#> (Intercept) 6.1841091 4.8991403 1.262 0.2068
+#> cyl -1.7492046 0.8392287 -2.084 0.0371 *
+#> hp 0.0236170 0.0537369 0.439 0.6603
+#> cyl:hp 0.0005349 0.0067365 0.079 0.9367
+#> ---
+#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+#>
+#> (Dispersion parameter for binomial family taken to be 1)
+#>
+#> Null deviance: 43.230 on 31 degrees of freedom
+#> Residual deviance: 28.619 on 28 degrees of freedom
+#> AIC: 36.619
+#>
+#> Number of Fisher Scoring iterations: 5
To extract overall model statistics from format_stats()
,
+pass the lm
or glm
object but omit any
+terms.
Code | +Output | +
---|---|
format_stats(lm_mpg_cyl_hp) |
++R2 = 0.757, F(3, 28) = 33.113, +p < .001 | +
format_stats(lm_mpg_cyl_hp, full = FALSE) |
++R2 = 0.757, p < .001 | +
format_stats(glm_am_cyl_hp) |
+Deviance = 28.619, χ2 = 14.611, AIC = +36.619 | +
format_stats(glm_am_cyl_hp, full = FALSE) |
+Deviance = 28.619, AIC = 36.619 | +
To extract term-specific statistics, pass the object and a character
+string describing which term to extract. Apply summary()
to
+your aov
object and copy the text of the term you want to
+extract. Then you can format the number of digits of coefficients with
+digits
and digits of p-values with pdigits
.
+Include the leading zeros for coefficients and p-values with
+pzero = TRUE
. Remove italics with
+italics = FALSE
. With dfs
, format degrees of
+freedom as parenthetical (par
) or subscripts
+(sub
) or remove them (none
).
Code | +Output | +
---|---|
format_stats(lm_mpg_cyl_hp, term = "cyl") |
++β = -4.119, SE = 0.988, t = -4.168, p +< .001 | +
format_stats(lm_mpg_cyl_hp, term = "cyl:hp") |
++β = 0.020, SE = 0.009, t = 2.240, p = +.033 | +
format_stats(glm_am_cyl_hp, term = "cyl") |
++β = -1.749, SE = 0.839, z = -2.084, p = +.037 | +
format_stats(lm_mpg_cyl_hp, term = "cyl", digits = 2, pdigits = 2) |
++β = -4.12, SE = 0.99, t = -4.17, p < +.01 | +
format_stats(lm_mpg_cyl_hp, term = "cyl", pzero = TRUE) |
++β = -4.119, SE = 0.988, t = -4.168, p +< 0.001 | +
format_stats(lm_mpg_cyl_hp, term = "cyl", italics = FALSE) |
+β = -4.119, SE = 0.988, t = -4.168, p < .001 | +
format_stats(lm_mpg_cyl_hp, term = "cyl", dfs = "sub") |
++β = -4.119, SE = 0.988, t = -4.168, p +< .001 | +
The format_stats()
function can also extract and format
@@ -396,7 +548,7 @@
+diff --git a/index.html b/index.html index 3c8ffbe..47576c6 100644 --- a/index.html +++ b/index.html @@ -130,6 +130,8 @@bf_corr <- BayesFactor::correlationBF(mtcars$mpg, mtcars$disp) bf_ttest <- BayesFactor::ttestBF(mtcars$vs, mtcars$am) bf_lm <- BayesFactor::lmBF(mpg ~ am, data = mtcars)
Functions and formatting typest.test() and
wilcox.test()
, including one-sample, two-sample independent, and paired tests)
aov()
lm()
and generalized linear models from glm()
+{BayesFactor}
package)format_stats.easycorrelation()
,
format_stats.htest()
,
+format_stats.lm()
,
format_ttest()
format_stats.easycorrelation()
,
format_stats.htest()
,
+format_stats.lm()
,
format_ttest()
diff --git a/reference/format_stats.BFBayesFactor.html b/reference/format_stats.BFBayesFactor.html
index 7c24704..729ecbd 100644
--- a/reference/format_stats.BFBayesFactor.html
+++ b/reference/format_stats.BFBayesFactor.html
@@ -132,6 +132,7 @@ format_stats.easycorrelation()
,
format_stats.htest()
,
+format_stats.lm()
,
format_ttest()
diff --git a/reference/format_stats.aov.html b/reference/format_stats.aov.html
index 2f3ce36..ac90b52 100644
--- a/reference/format_stats.aov.html
+++ b/reference/format_stats.aov.html
@@ -122,6 +122,7 @@ format_stats.easycorrelation()
,
format_stats.htest()
,
+format_stats.lm()
,
format_ttest()
diff --git a/reference/format_stats.easycorrelation.html b/reference/format_stats.easycorrelation.html
index 419300f..394b296 100644
--- a/reference/format_stats.easycorrelation.html
+++ b/reference/format_stats.easycorrelation.html
@@ -124,6 +124,7 @@ format_stats.aov()
,
format_stats.htest()
,
+format_stats.lm()
,
format_ttest()
@@ -147,7 +148,7 @@